Safdar, HamzaAydin, RasitSahin, Buenyamin2024-09-182024-09-1820220272-88421873-3956https://doi.org/10.1016/j.ceramint.2022.05.362https://hdl.handle.net/20.500.12483/12887This study was done aiming to evaluate the influence of manganese (Mn) as a transition metal on the morphological, structural, optical, electrical, and optoelectronic characteristics of nanostructured ZnO/CuO films. Different Mn concentrations (1 and 2 M%) were used to analyze these properties. In the present research, we have described the synthesis of nanocomposite pristine ZnO/CuO and Mn-doped ZnO/CuO (Mn: ZnO/CuO) oxide films by using simple successive ionic layer adsorption and reaction (SILAR) procedure. Scanning electron microscopy (SEM) and atomic force microscope (AFM) pictures reveal that the surface structure of ZnO/CuO nanocomposites was effectively altered by Mn2+ ion substitution. Energy-dispersive X-ray analysis (EDX) con-firms the presence of Zn, Cu, O, and Mn elements in the synthesized nanofilms. The film thickness had decreased from 1.65 to 1.23 mu m as a function of increasing Mn2+ concentration. The X-ray diffraction (XRD) pattern revealed that the synthesized ZnO/CuO nanocomposite was polycrystalline and the crystallite size decreases from 40.16 to 34.14 nm with increasing Mn2+ ion concentrations. The optical bandgap energy was found using Tauc's graph and it varied from 2.37 to 2.56 eV. A maximum average transmittance (30%) was obtained for 2 M % Mn2+ concentration. Electrical measurement of the ZnO/CuO composite films shows sheet resistance (Rs) change between 1.01 and 0.41 (x108 omega/sq.) depending on temperature from 300 K to 400 K. The biggest figure of merit observed in this work was 4.69 x 10-8 omega- 1. The results have shown that Mn-doping has an important effect on the physical attributes of SILAR-deposited ZnO/CuO films.eninfo:eu-repo/semantics/closedAccessZnO/CuO nanocompositeMnDopingSILARSyntheses, structural evolution, electrical and optoelectronic characterization of ZnO/CuO composite films doped with transition metal Mn2+ ionsArticle4818266782668810.1016/j.ceramint.2022.05.3622-s2.0-85131526936Q1WOS:000862809800004Q1