Yazar "Akdogan, M." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of Mn Addition on Structural and Superconducting Properties of (Bi, Pb)-2223 Superconducting Ceramics(Springer, 2012) Yildirim, G.; Bal, S.; Yucel, E.; Dogruer, M.; Akdogan, M.; Varilci, A.; Terzioglu, C.This study deals with the effect of Mn addition on the structural and superconducting properties of Bi1.8Pb0.4Sr2Mn (x) Ca2.2Cu3.0O (y) ceramics with x=0,0.03,0.06,0.15,0.3 and 0.6 by means of X-ray analysis (XRD), scanning electron microscopy (SEM), electron dispersive X-ray (EDX), resistivity, and transport critical current density (J (c)) measurements. Zero-resistivity transition temperatures (T (c)) of the samples produced via the standard solid-state reaction method are estimated from the dc resistivity measurements. Moreover, the phase fraction and lattice parameters are determined from XRD measurements while the microstructure, surface morphology and element composition analyses of the samples are investigated by SEM and EDX measurements, respectively. It is found that T (c) values are obtained to decrease from 109 K to 85 K; likewise, J (c) values are observed to reduce from 3200 A/cm(2) to 125 A/cm(2) with increasing Mn addition. According to the refinement of cell parameters done by considering the structural modulation, the Mn addition is confirmed by both an increase of the lattice parameter a and a decrease of the cell parameter c of the samples in comparison with that of the pure sample (Mn0). SEM measurements show that not only the surface morphology and grain connectivity are seen to degrade but the grain sizes of the samples are found to decrease with the increase of the Mn addition as well. The EDX results reveal that the elements used for the preparation of samples distribute homogeneously and the Mn atoms enter into the crystal structure by replacing Sr and Cu atoms. The possible reasons for the obtained degradation in microstructural and superconducting properties are also interpreted.Öğe Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors(Springer, 2011) Ozturk, O.; Cetinkara, H. A.; Asikuzun, E.; Akdogan, M.; Yilmazlar, M.; Terzioglu, C.The mechanical and superconducting properties of the Fe diffusion-doped (Bi-Pb)-2223 superconductor have been investigated. First, iron was evaporated on Bi-2223 superconductor and then the Fe layered superconductor was annealed at 830 A degrees C for 10, 30 and 60 h. Static Vickers hardness, dc electrical resistivity, X-ray diffraction and scanning electron microcopy have been carried out to assess the effects of Fe doping. These measurements indicates that Fe doping, in comparison with the undoped samples, increased the critical transition temperature, and improved formation of high T (c) phase, while decreasing the number and size of voids. Moreover, both microhardness and grain size were also enhanced by increasing the amount of diffusion. The values of microhardness were found to be load dependent. In addition, we have investigated the indentation size effect (ISE) behavior using some models such as the Kick's law, modified proportional specimen resistance (MPRS) model and the Hays- Kendall (HK) approach. Among them, both HK and MPRS models are successful. In this study, the possible reasons of noticed improvement on mechanical and physical properties due to iron diffusion are discussed.