Yazar "Arslan, Mustafa Turan" seçeneğine göre listele
Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Channel Selection from EEG Signals and Application of Support Vector Machine on EEG Data(Ieee, 2017) Arslan, Mustafa Turan; Eraldemir, Server Goksel; Yildirim, EsenIn this study, EEG data recorded during mental arithmetic operations and silent reading were analyzed by discrete wavelet transform and feature vectors were obtained. The obtained feature vectors are classified by Support Vector Machines (SVM). Results are given for 26 channels, all recorded channels, and for 10 most effective channels. Correlation based feature selection based algorithm is used for choosing the most effective channels. Decreasing the number of channels without compromising the accuracy, is an important issue for real time applications for which a short analysis time is crucial. In this study, mental arithmetic and silent reading tasks are classified with an accuracy of 90.71%, a precision rate of 91.03% and F-measure rate of 90.63% on the average using 26 channels, whereas the accuracy, precision and F-measure were 90.44%, 90.61% and 90.08, respectively which were comparable to that of obtained using all channels, for reduced number of channels.Öğe Classification of Intensive-less Intensive and Related-Unrelated Tasks(Prof.Dr. İskender AKKURT, 2024) Arslan, Mustafa Turan; Yildirim, EsenThis study investigates the classification of electrical brain activity during intensive-less intensive and related-unrelated tasks. EEG signals were collected from 20 physically and mentally healthy university students (15 males, 5 females) residing in Adana and Hatay, Turkey, through 14 channels. Continuous Wavelet Transform analysis was applied for feature extraction. Subsequently, subject-dependent and subject-independent classifications were performed using the k-nearest Neighbour algorithm. In subjectdependent classification, the accuracy range for intensive-less intensive tasks varied between 77.6% and 89.8%, while the range for related-unrelated tasks was between 73.2% and 88%. Subject-independent classification yielded an accuracy of 79.2% for intensive-less intensive tasks and 77.5% for related unrelated tasks. © IJCESENÖğe Diagnosis of Pancreatic Cancer by Pattern Recognition Methods Using Gene Expression Profiles(Ieee, 2017) Arslan, Derya; Ozdemir, Merve Erkinay; Arslan, Mustafa TuranPancreatic cancer is the fourth most common cause of cancer-related deaths across the globe and it is one of the most difficult cancer types to recognize early. Early diagnosis of pancreatic cancer is crucial to increase survival for patients. In this study, it was tried to be estimated that persons were pancreatic cancer or healthy using microarray gene expression profile. In accordance with this purpose, Anova method was used to reduce the size of high-dimensional pancreatic cancer gene expression profile and eliminate redundant features. Reducedsize pancreas cancer gene expression profiles were classified by k-nearest neighbor (k-NN) and artificial neural network (ANN) algorithms. The classification accuracy is %82.7 and 84.6% with k-NN, ANN respectively. The promising results indicate that pancreatic cancer can be diagnosed with high accuracy.Öğe The Effect of Adaptive Neuro-fuzzy Inference System (ANFIS) on Determining the Leadership Perceptions of Construction Employees(Springer Int Publ Ag, 2023) Keles, Abdullah Emre; Haznedar, Bulent; Keles, Muemine Kaya; Arslan, Mustafa TuranIn the construction industry, which is Turkey's locomotive and the strategic sector, determining the kind of leadership that impacts employees' productivity is directly related to the success of the business. The identification of leadership types that will motivate and support employees has great importance in terms of construction businesses where the human element is at the forefront. From the point of view of the site chiefs, it is thought that it will benefit all the stakeholders in the construction sector to determine which leader type will motivate which employees. In this study, the productivity relations between the engineers working in construction companies constructing buildings in Adana Province and the employees who are the hierarchically lower-level employees of these persons were investigated using bi-directional surveys. The impact of leadership types on the employees' productivity has been investigated using machine learning. The effects of ANFIS method and the use of genetic algorithm (GA) on the training of ANFIS for the classification are investigated. The data set, which was prepared within the scope of the study, was classified by ANFIS-genetic algorithm (ANFIS-GA), ANFIS-backpropagation algorithm (ANFIS-BP), and ANFIS-hybrid algorithm (ANFIS-HB) algorithms after the required preprocesses. The 10-fold cross-validation technique is used to test the performance of the classification methods. According to the obtained results, the highest accuracy rate of 82.18% is obtained when ANFIS-GA algorithm is used as a classifier. As a result of the study, it is concluded that for this data set, ANFIS, an artificial neural network-based algorithm, is more successful in determining the leadership perceptions of construction employees when it is trained by GA.Öğe Investigation of feature selection algorithms on a cognitive task classification : a comparison study(2018) Eraldemir, Servet Göksel; Arslan, Mustafa Turan; Yıldırım, EsenIn this study, the effects of feature selection on classification of the electrical signals generated in the brain during numerical and verbal operations are investigated. 18 healthy university/college students were chosen for the experimental study. EEG signals were recorded during silent reading and mental arithmetic operations without using any pen and paper. A total of 60 slides, 30 of which contained reading passages and the rest contained arithmetic operations, were presented in the experiment. EEG signals recorded from 26 channels during the slide show. The recorded EEG signals were analyzed by Hilbert Huang Transform (HHT), and then features were extracted. 312 features were classified by Bayesian Network algorithm without applying feature selection with 92.60% average accuracy. Consistency measures and Correlation based Feature Selection methods were, then, used for feature selection and the numbers of selected features are 8 and 39 on average, respectively. Classification accuracies by using these feature selection algorithms were obtained as 93.98% and 95.58%, respectively. The results showed that feature selection algorithms contribute positively to the classification performance.Öğe Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS’in eğitilmesi(2017) Haznedar, Bülent; Arslan, Mustafa Turan; Kalınlı, AdemSınıflandırma, verilerin analiz edilmesi için önemli bir veri madenciliği tekniği olup tıp, genetik ve biyomedikal mühendisliği başta olmak üzere birçok alanda kullanılmaktadır. Özellikle tıp alanında DNA mikrodizi gen ekspresyon verilerini sınıflandırmaya yönelik yapılan çalışmalarda artış görülmektedir. Ancak, mikrodizi gen ekspresyon (ifade) verilerinde bulunan gen sayılarının çokluğu ve bu veriler arasında doğrusal olmayan bağıntılar bulunması gibi problemlerden dolayı geleneksel sınıflandırma algoritmalarının başarımları sınırlı kalabilmektedir. Bu sebeplerden dolayı son yıllarda sınıflandırma probleminin çözümü için yapay zekâ tekniklerine dayalı sınıflandırma yöntemlerine olan ilgi giderek artmaya başlamıştır. Bu çalışmada, karaciğer mikrodizi kanser veri setinin sınıflandırılması için Uyarlamalı Ağ Tabanlı Bulanık Mantık Çıkarım Sistemi (ANFIS) ve Genetik Algoritmaya (GA) dayalı hibrid bir yaklaşım önerilmiştir. Simülasyon sonuçları, diğer bazı yöntemlere ait sonuçlarla karşılaştırılmıştır. Elde edilen sonuçlardan, önerilen yöntemin diğer yöntemlere göre daha başarılı olduğu görülmüştür.Öğe Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data(Springer Heidelberg, 2021) Haznedar, Bulent; Arslan, Mustafa Turan; Kalinli, AdemIn the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach's performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data.Öğe Subject-dependent and subject-independent classification of mental arithmetic and silent reading tasks(2017) Arslan, Mustafa Turan; Eraldemir, Server Göksel; Yıldırım, EsenIn this study, the electrical activities in the brain were classified during mental mathematical tasks and silent text reading. EEG recordings are collected from 18 healthy male university/college students, ages ranging from 18 to 25. During the study, a total of 60 slides including verbal text reading and arithmetical operations were presented to the subjects. EEG signals were collected from 26 channels in the course of slide show. Features were extracted by employing Hilbert Huang Transform (HHT). Then, subjectdependent and subject-independent classifications were performed using k-Nearest Neighbor (k-NN) algorithm with parameters k=1, 3, 5 and 10. Subject-dependent classifications resulted in accuracy rates between 95.8% and 99%, whereas the accuracy rates were between 92.2% and 97% for subject independent classification. The results show that EEG data recorded during mathematical and silent reading tasks can be classified with high accuracy results for both subject-dependent and subject-independent analysisÖğe Ultra-Wideband (UWB) characteristic estimation of elliptic patch antenna based on machine learning techniques(Walter De Gruyter Gmbh, 2020) Gencoglan, Duygu Nazan; Arslan, Mustafa Turan; Colak, Sule; Yildirim, EsenIn this study, estimation of Ultra-Wideband (UWB) characteristics of microstrip elliptic patch antenna is investigated by means of k-nearest neighborhood algorithm. A total of 16,940 antennas are simulated by changing antenna dimensions and substrate material. Antennas are examined by observing Return Loss and Voltage Standing Wave Ratio (VSWR) characteristics. In the study, classification of antennas in terms of having UWB characteristics results in accuracies higher than 97%. Additionally, Consistency based Feature Selection method is applied to eliminate redundant and irrelevant features. This method yields that substrate material does not affect the UWB characteristics of the antenna. Classification process is repeated for the reduced feature set, reaching to 97.44% accuracy rate. This result is validated by 854 antennas, which are not included in the original antenna set. Antennas are designed for seven different substrate materials keeping all other parameters constant. Computer Simulation Technology Microwave Studio (CST MWS) is used for the design and simulation of the antennas.