Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Aydin, Güral" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ N/A ]
    Öğe
    Prediction of Muon Energy using Deep Neural Network with Multiple Coulomb Scattering Data
    (TUBITAK, 2022) Aydin, Güral
    This study is based on determining muon beam energies using multiple Coulomb scattering data in artificial neural networks. Muon particles were scattered off a 50-layer lead object by using the G4beamline simulation program which is based on Geant4. Before working with deep neural networks, average scattering angle distributions regarding the number of crossed layers were analyzed with the fit method using the well-known formula for multiple Coulomb scattering to estimate muon beam energies. Subsequently, average scattering angles over the number of crossed layers from 1 to 10 were used in deep neural network structures to estimate the muon beam energy. It has been observed that deep neural networks significantly improve the resolutions compared to the ones obtained with the fit method. © 2022, TUBITAK. All rights reserved.

| Hatay Mustafa Kemal Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Hatay Mustafa Kemal Üniversitesi, Hatay, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim