Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Cetin, Hidayet" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Tuning the morphological, structural, optical and dielectric properties of hausmannite (Mn3O4) films by doping heavy metal lead
    (Academic Press Ltd- Elsevier Science Ltd, 2020) Sahin, Bunyamin; Aydin, Rasit; Cetin, Hidayet
    In this study, we reported a systematic approach to prepare bare and lead doped Mn3O4 films synthesized by the SILAR method. Morphological, structural, optical and dielectric specialties of the Mn3O4 films were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Energy Dispersive Spectrometry (EDS), X-ray diffraction (XRD) analysis, Ultra-violet-Visible (UV-Vis) spectrophotometry and the impedance analysis, respectively with respect to changes in Pb dopant quantity. SEM and AFM analysis exhibited that Pb-doping influenced the morphology of the film surface. X-ray diffraction patterns proved that films have a cubic crystal structure with preferential orientations of (104) and (211) planes. The crystallite sizes of the bare and lead-doped Mn3O4 films were found to vary from 20.80 to 10.20 nm. The bandgap value of the Mn3O4 films increases from 2.20 eV to 2.38 eV after doping Pb. The dielectric constant, AC conductivity, and loss tangent of the produced samples were studied in the frequency range of 20 Hz-1 MHz. The analysis results showed that the dielectric constant and AC conductivity of the Mn3O4 compound had changed drastically with the doping of Pb. The dielectric constant and AC conductivity rose from 1703 to 120777 and from 3.35 x 10(-5) to 2.6310(-3) S/m at 100 Hz with 0.25 M% Pb-doping, respectively.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Variation of the key morphological, structural, optical and electrical properties of SILAR CdO with alkaline earth Ca2+ ions doping
    (Elsevier Sci Ltd, 2019) Sahin, Bunyamin; Aydi, Rasit; Cetin, Hidayet
    Pristine and alkaline earth Ca2+ ions doped (CaxCd1-xO (0 <= x <= 0.025)) CdO films were fabricated by SILAR technique on the soda lime glass substrates. The influence of increasing Ca content on the morphological, structural, optical and electrical properties of deposited films was analyzed. Metallurgical Microscope (MM), Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) images of the samples exhibited that the morphology was dramatically changed with the addition of Ca to the synthesis solution when compared to the pristine CdO film. Energy Dispersive Spectrometry (EDS) analyses confirmed the presence of Ca in the doped films. X-ray diffraction (XRD) analysis of the pristine and Ca-doped CdO films exhibited cubic crystalline structure with preferred orientation of (111) and (200) direction. The existence of chemical bonding was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) study. Optical studies revealed that the energy band gap were dependent on Ca-doping content in accordance with both Vegard's relation and Tauc's law calculations. The impedance analysis and four-point probe measurement results of CdO thin films were studied. Sheet resistances of the thin films were increased by Ca doping up to doping level of 1.5%. Further doping level causes degradation in sheet resistance.

| Hatay Mustafa Kemal Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Hatay Mustafa Kemal Üniversitesi, Hatay, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim