Yazar "Dilber, Erhan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems(Springer London Ltd, 2016) Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi SukurThe aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 A degrees C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 +/- 3.3 MPa) and acid etching groups (7.3 +/- 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 +/- 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.Öğe Effects of different surface treatments on shear bond strength in two different ceramic systems(Springer London Ltd, 2013) Yavuz, Tevfik; Dilber, Erhan; Kara, Haluk Baris; Tuncdemir, Ali Riza; Ozturk, A. NilgunThe purpose of this study was to evaluate the influence of different surface treatments (sandblasting, acid etching, and laser irradiation) on the shear bond strength of lithium disilicate-based core (IPS Empress 2) and feldspathic ceramics (VITA VM 9). One hundred ceramic discs were divided into two groups of 50 discs each for two ceramic systems: IPS Empress 2 (group I) and VITA VM 9 (group II). Each of the two groups was further divided into five surface treatment groups (ten each) as follows: group SB, sandblasting with alumina particles (50 mu m); group HF, 5 % hydrofluoric acid etching; group L, Er:YAG laser irradiation (distance, 1 mm; 500 mJ; 20 Hz; 10 W; manually, noncontact R14 handpiece); group SB-L, sandblasting + Er:YAG laser; and group HF-L, 5 % hydrofluoric acid + Er:YAG laser. Luting cement (Panavia 2.0) was bonded to the ceramic specimens using Teflon tubes. After 24 h of water storage, a shear bond strength test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min. The data were analyzed with a two-way analysis of variance (ANOVA) and Tukey's honestly significant difference tests (alpha = 0.05). The two-way ANOVA indicated that the shear bond strength was significantly affected by the surface treatment methods (p < 0.05), but there was no significant interaction between the ceramic systems. Group SB-L had the highest mean values for each ceramic system. Sandblasting, followed by Er:YAG laser irradiation, enhanced the bond strength, indicating its potential use as an alternative method. The atomic force microscopic evaluation revealed that group SB had the most distinct sharp peaks among the groups.