Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Duman, Firat" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Patient specific seizure prediction algorithm using Hilbert-Huang Transform
    (2012) Duman, Firat; Özdemir, Nilüfer; Yildirim, Esen
    Epilepsy is a neurological disorder that affects about 50 million people around the world. EEG signal processing plays an important role in detection and prediction of epileptic seizures. The aim of this study is to develop a method for early seizure prediction based on Hilbert-Huang Transform. In this patient specific method, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) and first 5 IMFs are used to obtain features for classification of preictal and interictal recordings. Proposed method was tested on Freiburg EEG database. A total of 58 hours of preictal data, prior to 87 seizures, and 490 hours of interictal data were examined. Algorithm resulted in 89.66% sensitivity (78 of 87 seizures) and 0.49 FPs/h using 30 seconds EEG segment with 50% overlap. © 2012 IEEE.
  • [ N/A ]
    Öğe
    Seizure detection via empirical mode decomposition
    (2011) Özdemir, Nilüfer; Duman, Firat; Yildirim, Esen
    Epilepsy is a neurological disorder that affects a serious number of people all around the world. Detection of epileptic seizures using EEG signals occupies an important part in the diagnosis of epilepsy. The aim of this study is to develop a method for seizure detection based on Empirical Mode Decomposition. In this method, EEG signals are decomposed to their Intrinsic Mode Functions and first 4 IMFs's maximum, minimum, mean, standart deviation and energy values are used for classification. This method was tested on 123 minutes of iktal data and 200 minutes of inter-iktal data using 3 different classifiers. For all clasifiers, over %80 sensitivity and over %95 specificity were otained. These results show that epileptic seizure detection in EEG records via EMD is very promising. © 2011 IEEE.

| Hatay Mustafa Kemal Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Hatay Mustafa Kemal Üniversitesi, Hatay, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim