Yazar "Erdogan, Azmi" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Microstructure, hardness and high temperature wear characteristics of boronized Monel 400(Elsevier Science Sa, 2022) Kucuk, Yilmaz; Doleker, K. Mert; Gok, M. Sabri; Dal, Serkan; Altinay, Yasemin; Erdogan, AzmiBoronizing processes were carried out at 900 degrees C, 950 degrees C and 1000 degrees C for 2, 4 and 6 h to improve the wear performance of Monel 400 alloy. According to microstructure analyses and nanoindentation tests, Ni2B, FeNiB and FeB phases were detected as dominant phases in the boronized layer. Apart from this, it was observed that the amount of Cu deposits in the boronized layers increased depending on the increasing boronizing temperature. After the boronizing process, the boride layer thickness and hardness values were found to be in the range of 32-272 mu m and 12.76-17.83 GPa, respectively. From the results of dry sliding wear test, the wear volume loss values of the boronized Monel 400 alloy decreased by approximately 25 times compared to the untreated samples. The lowest volume loss value among all test samples was observed in the boronized sample at 950 degrees C for 4 h. In addition to the hardness value, it was determined that the morphology and mechanical properties of the boronized layer were also effective on the wear results. Plastic deformation, delamination and oxidation type wear mechanisms were observed as the dominant wear mechanisms in the room and high temperature tests of boronized samples.Öğe Microstructure, some mechanical properties and tribocorrosion wear behavior of boronized Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.10 high entropy alloy(Elsevier Science Sa, 2021) Karakas, Mustafa Serdar; Gunen, Ali; Carboga, Cemal; Karaca, Yusuf; Demir, Mehmet; Altinay, Yasemin; Erdogan, AzmiHigh-entropy alloys (HEAs) with face-centered cubic (FCC) structures exhibit high toughness and corrosion resistance, but their average strengths and relatively low wear resistance can limit their engineering ap-plications. In this study, FCC Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.10 HEAs were boronized for 4 h at temperatures of 900, 950, and 1000 degrees C to form hard, protective metal borides on their surfaces. The microstructural characteristics of the borides formed were examined using X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The mechanical properties of the boride layers were studied by nanoindentation measurements, and the tribological performances of the layers were evaluated by ball-on -disk type wear tests in air, 3.5% NaCl and 5% H2SO4. Irrespective of the boronizing temperature, (Fe0.4Mn0.6) B, (Cr0.4Mn0.6)B, (CoFe)B2 and Cr2Ni3B6 phases were detected in the surfaces of the boronized samples. The surface hardnesses of the boronized samples reached nearly ten times the hardness of the as-cast HEA. The borides were effective in reducing friction as well as wear. Increasing the boronizing temperature increased the thicknesses of the coatings and further improved wear characteristics. Wear rates in 5% H2SO4 were generally higher than the wear rates in 3.5% NaCl, but the highest wear rates were observed in air. (c) 2021 Elsevier B.V. All rights reserved.