Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Futyma-Gabka, Karolina" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Evaluation of a Decision Support System Developed with Deep Learning Approach for Detecting Dental Caries with Cone-Beam Computed Tomography Imaging
    (Mdpi, 2023) Amasya, Hakan; Alkhader, Mustafa; Serindere, Goezde; Futyma-Gabka, Karolina; Aktuna Belgin, Ceren; Gusarev, Maxim; Ezhov, Matvey
    This study aims to investigate the effect of using an artificial intelligence (AI) system (Diagnocat, Inc., San Francisco, CA, USA) for caries detection by comparing cone-beam computed tomography (CBCT) evaluation results with and without the software. 500 CBCT volumes are scored by three dentomaxillofacial radiologists for the presence of caries separately on a five-point confidence scale without and with the aid of the AI system. After visual evaluation, the deep convolutional neural network (CNN) model generated a radiological report and observers scored again using AI interface. The ground truth was determined by a hybrid approach. Intra- and inter-observer agreements are evaluated with sensitivity, specificity, accuracy, and kappa statistics. A total of 6008 surfaces are determined as 'presence of caries' and 13,928 surfaces are determined as 'absence of caries' for ground truth. The area under the ROC curve of observer 1, 2, and 3 are found to be 0.855/0.920, 0.863/0.917, and 0.747/0.903, respectively (unaided/aided). Fleiss Kappa coefficients are changed from 0.325 to 0.468, and the best accuracy (0.939) is achieved with the aided results. The radiographic evaluations performed with aid of the AI system are found to be more compatible and accurate than unaided evaluations in the detection of dental caries with CBCT images.

| Hatay Mustafa Kemal Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Hatay Mustafa Kemal Üniversitesi, Hatay, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim