Yazar "Ozcelik, Tuncer Burak" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns(Mosby-Elsevier, 2016) Kale, Ediz; Seker, Emre; Yilmaz, Burak; Ozcelik, Tuncer BurakStatement of problem. Monolithic zirconia crowns fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) have recently become a common practice for the restoration of posterior teeth. The marginal fit of monolithic zirconia crowns may be affected by different cement space parameters set in the CAD software. Information is scarce regarding the effect of cement space on the marginal fit of monolithic zirconia crowns fabricated with CAD CAM technology. Purpose. The purpose of this in vitro study was to evaluate the effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns before cementation. Material and methods. Fifteen right maxillary first molar typodont teeth with standardized anatomic preparations for complete-coverage ceramic crowns were scanned with a 3-dimensional laboratory scanner. Crowns were designed 3-dimensionally using software and then milled from presintered monolithic zirconia blocks in a computer numerical control dental milling machine. The cement space was set at 25 mu m around the margins for all groups, and additional cement space starting 1 mm above the finish lines of the teeth was set at 30 mu m for group 25-30, 40 mu m for group 25-40, and 50 mu m for group 25-50 in the CAD software. A total of 120 images (3 groups, 5 crowns per group, 8 sites per crown) were measured for vertical marginal discrepancy under a stereoscopic zoom microscope and the data were statistically analyzed with 1-way analysis of variance, followed by the Tukey honestly significant difference test (alpha=.05). Results. The results showed that different cement space values had statistically significant effect on the mean vertical marginal discrepancy value of tested crowns (P<.001). The mean marginal discrepancy was 85 mu m for group 25-30, 68 mu m for group 25-40, and 53 mu m for group 25-50. Conclusions. Within the limitations of this in vitro study, it was concluded that the cement space had a significant effect on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. The marginal fit improved as the cement space decreased.Öğe Effect of fabrication stages and cementation on the marginal fit of CAD-CAM monolithic zirconia crowns(Mosby-Elsevier, 2017) Kale, Ediz; Yilmaz, Burak; Seker, Emre; Ozcelik, Tuncer BurakStatement of problem. Monolithic zirconia crowns fabricated using computer-aided design and computer-aided manufacturing (CAD-CAM) technology have recently become an alternative dental prosthetic treatment. The marginal fit of monolithic zirconia crown may be affected by different stages of the fabrication procedures in the laboratory and cementation. Information regarding the accuracy of fit of monolithic zirconia crowns at different stages of fabrication and cementation is limited. Purpose. The purpose of this in vitro study was to evaluate the effect of different stages of fabrication and cementation on the vertical marginal discrepancy (VMD) of CAD-CAM fabricated monolithic zirconia crowns. Material and methods. Six ivorine right maxillary first molar typodont teeth with standardized anatomic preparations for complete coverage ceramic crowns were scanned with a 3-dimensional laboratory scanner. Crowns were designed using CAD software and milled from presintered monolithic zirconia blocks in a 5-axis dental milling machine. A cement space of 25 pm for the margins and a 50-gm space starting 1 mm above the finish lines of the teeth were virtually set in the CAD software. A total of 144 measurements were performed on 6 specimens with 8 measurement locations in 3 different stages using stereoscopic zoom microscopy; after initial production of the crowns (post-sintering group), after glazing (post-glazing group), and after cementation (post-cementation group). The VMD values were statistically analyzed with 1-way repeated measures ANOVA and the Holm-Sidak method (alpha=.05). Results. Different stages of fabrication and cementation significantly affected the VMD of tested crowns (P=.003). The mean VMD was 38 gm for post-sintering group, 38 pm for post-glazing group, and 60 mu m for post-cementation group, with statistical differences between the post-sintering group, the post-cementation group (P<.002), and the post-glazing group and post-cementation group (P<.003); there were no statistical differences between the post-sintering group and the post-glazing group (P=.966). Conclusions. Within the limitations of this in vitro study, glazing did not significantly change the VMD of CAD-CAM monolithic zirconia crowns. Cementation significantly increased the VMD values.Öğe Marginal fit of 3-unit CAD-CAM zirconia frameworks fabricated using cone beam computed tomography scans: an experimental study(Springer, 2022) Belgin, Huseyin Berkay; Kale, Ediz; Ozcelik, Tuncer Burak; Yilmaz, BurakWhether cone beam computed tomography (CBCT) scans can be used for the fabrication of computer-aided design and computer-aided manufacturing (CAD-CAM) fixed dental prostheses (FDPs) is not known. The purpose of the present study was to compare the marginal fit of 3-unit zirconia FDPs fabricated by using CBCT or 3-dimensional (3D) laboratory scanning. Extracted second premolar and molar teeth in a maxillary typodont model were prepared. The first molar was removed and the typodont model was scanned with a laboratory or a CBCT scanner to generate two virtual 3D cast groups (3DL and CBCT). Forty four 3-unit zirconia FDPs were designed on virtual casts and milled. The vertical marginal discrepancy (VMD) was measured by x100-magnification microscopy at seven locations on each abutment. A total of 616 measurements were made at 14 fixed locations in two groups of 22 specimens. The VMD data for 3DL and CBCT groups were statistically analyzed using the Mann-Whitney U test (alpha = 0.05). The mean VMDs on premolar ranged between 44 and 55 mu m (median: 43-55 mu m) in 3DL, and 74 and 100 mu m (median: 72-93 mu m) in CBCT; and on the molar, between 47 and 114 mu m (median: 46-114 mu m) in 3DL, and 91 and 162 mu m (median: 93-156 mu m) in CBCT. There was a significant difference between the gaps in 3DL and CBCT groups (p < 0.001). FDPs fabricated using 3D laboratory scanner had significantly smaller VMDs. Nevertheless, the 3-unit zirconia FDPs fabricated using CBCT scans presented promising marginal integrity.Öğe Marginal fit of CAD-CAM monolithic zirconia crowns fabricated by using cone beam computed tomography scans(Mosby-Elsevier, 2020) Kale, Ediz; Cilli, Mesutcan; Ozcelik, Tuncer Burak; Yilmaz, BurakStatement of problem: Information regarding the precision of monolithic zirconia crowns fabricated by using a standard computer-aided design and computer-aided manufacturing (CAD-CAM) workflow is available. However, information on the effect of a modified workflow using 3D laboratory scanning and/or cone beam computed tomography (CBCT) for monolithic zirconia crown fabrication is lacking. Purpose: The purpose of this in vitro study was to evaluate the effect of different scans on the marginal fit of CAD-CAM monolithic zirconia crowns fabricated by 3D laboratory scanning and CBCT. Material and methods: An extracted maxillary left first molar was prepared and digitized by using a 3D laboratory scanner (D900; 3Shape A/S) (control group). The tooth was also scanned by CBCT (i-CAT; Imaging Sciences) to generate a second virtual 3D model (CBCTscan group). A tooth cast out of polyurethane (PU) (Zenotec Model; Wieland) was reproduced from the CBCT data by using a CAD software program (Dental System 2.6; 3Shape A/S) and milling machine (CORiTEC 550i; imes-icore) and further scanned by using the 3D laboratory scanner to generate a third virtual 3D model to represent a clinical scenario where a patient's cast is needed (PU3DLab group). A monolithic zirconia crown design (cement space: margin 40 mu m, 1 mm above 70 mu m) was used on the virtual models, and crowns were fabricated out of presintered zirconia blocks (ZenostarT4; Wieland) by using a 5-axis milling machine (CORiTEC 550i; imes-icore). The crowns were sintered (Sinterofen HT-S Speed; Mihm-Vogt), and the vertical marginal discrepancy (VMD) was measured by x100-magnification microscopy. Measurements were made at 384 points in 3 groups of 16 specimens. The measurements for each specimen were averaged, and VMD mean values were calculated. The Kruskal-Wallis test was used for the statistical analysis (alpha=.05). The Mann-Whitney U test and Bonferroni adjustment were further used to compare the pairs (alpha=.017). Results: The mean VMD value was 41 mu m (median: 38 mu m) for the control group, 44 mu m (median: 42 mu m) for the CBCTscan, and 60 mu m (median: 58 mu m) for the PU3DLab. No significant difference was found between control and CBCTscan groups (P=.274). However, there was a significant difference between control and PU3DLab and CBCTscan and PU3DLab groups (P<.001). Conclusions: Marginal fit of the crowns fabricated by using the 3D laboratory scanner and through the direct use of CBCT was better than that of the crowns fabricated by using the workflow that combined the use of CBCT, PU cast, and 3D laboratory scanner. All tested protocols enabled the fabrication of monolithic zirconia crowns with a marginal discrepancy smaller than 120 mu m.