Yazar "Sener, Mehmet Furkan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe GIS based analysis of doline density on Taurus Mountains, Turkey(Springer, 2018) Ozturk, Muhammed Zeynel; Simsek, Mesut; Sener, Mehmet Furkan; Utlu, MustafaThe Taurus Mountain is one of the most important karstic region of the world and dolines are characteristics landforms of this area. However, the number and distribution of doline are unknown in the study area. The aims of this study are to explain the total number of dolines, distribution of doline density, effects of slope conditions and the change of doline orientation in the Taurus Mountains. According to the 1/25000 scale topographic maps utilized in this study, a total of 140,070 dolines were determined in a 13,189 km(2) area on eleven high karstic plateaus bordered by steep slopes and deep gorges. These plateaus are substantially affected by highly-faulted and jointed systems and about 80% of each plateau is covered with neritic limestone. The dolines are located at an elevation between 10 and 2870 m. Average elevation of all dolines is 1842 m. 90% of dolines are located between 1300 and 2270 m and only 5% of dolines found under 1330 m. According to this results, the densest doline zone corresponds to the alpine and periglacial zone above the treeline. Doline density reaches > 100 doline/km(2) on Mt. Anamas and the Seyran, Geyik and Akdag ranges as well as the TaAYeli plateau. Maximum density (187 doline/km(2)) is found on the Akdag Mountains. However, 66% of the study area is characterized by low density, 29.9% with moderate density, 3.4% with high density and 0.7% with very high density. The highest doline densities are seen on gentle slopes (15A degrees-25A degrees/km(2)) and steep slopes (> 35A degrees/km(2)) are limited doline distribution. According to the rose diagram formed by the azimuths of the long axis of the dolines at the Central Taurus, two direction are dominant in doline orientations (NW-SE and NE-SW). However, dominant directions are NE-SW at eastern, NE-SW and NW-SE at central and NW-SE at western part of the Central Taurus. According to this elongations, doline orientations are formed an arc which is formed by tectonic evolution of the Central Taurus.Öğe Morphotectonic development of surface karst in Western Taurus (Türkiye)(Springer, 2023) Sener, Mehmet Furkan; Simsek, Mesut; Utlu, Mustafa; Ozturk, Muhammed Zeynel; Sozbilir, HasanThe Taurus Mountains, the most important karst terrains of Turkiye, contain many surface and subsurface karst landforms, and the morphometric features of these landforms provide important data on the geomorphological and morphotectonic development of karst areas in the Taurus Mountains. Micro and macro karst depressions are the most important surface landforms in the Western Taurus Mountains. In this study, a total of 7093 micro depressions (doline) and 74 macro depressions (polje) located in the Western Taurus Mountains were detected and morphometric properties were calculated. The poljes developed within the Beydaglari Autochthon and Lycian nappes, while the dolines developed mainly in the high karst plateaus within the Beydaglari Autochthon. As briefly described below, the morphotectonic evolution of both landforms is closely related to the tectonic evolution of the Western Taurus Mountains. As a result of this tectonic activity, the Lycian Nappes from the northwest and the Antalya Nappes from the east thrust over the Beydaglari autochthon, leading to the development of nappes, reverse faults, and fold systems in the study area. The Western Taurus began terrestrialization starting from the Oligocene and began to erode from the Miocene. This erosion process led to the development of valley systems within the Western Taurus region. The NE-SW and NW-SE directional normal faults have developed under the influence of extensional tectonics since the Miocene. This extensional tectonism has caused widespread development of the poljes in the study area. Furthermore, with the lowering of the karst base level, dolines and paleovalleys began to develop in limestone areas at higher elevations. All morphometric and morphotectonic processes reveal that the extension of both doline and polje areas in the study area are parallel to the elongation of tectonic structures in the Western Taurus.