Yazar "Turktas, Mine" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Genome of wild olive and the evolution of oil biosynthesis(Natl Acad Sciences, 2017) Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, MingHere we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at similar to 28 and similar to 59 Mya. These events contributed to the expansion and neo-functionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2,3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.Öğe Genome-wide fungal stress responsive miRNA expression in wheat(Springer, 2014) Inal, Behcet; Turktas, Mine; Eren, Hakan; Ilhan, Emre; Okay, Sezer; Atak, Mehmet; Erayman, MustafaMicroRNAs (miRNAs) are small non-coding class of RNAs. They were identified in many plants with their diverse regulatory roles in several cellular and metabolic processes. A number of miRNAs were involved in biotic and abiotic stress responses. Here, fungal stress responsive wheat miRNAs were analyzed by using miRNA-microarray strategy. Two different fungi (Fusarium culmorum and Bipolaris sorokiniana) were inoculated on resistant and sensitive wheat cultivars. A total of 87 differentially regulated miRNAs were detected in the 8 x 15 K array including all of the available plant miRNAs. Using bioinformatics tools, the target transcripts of responsive miRNAs were predicted, and related biological processes and mechanisms were assessed. A number of the miRNAs such as miR2592s, miR869.1, miR169b were highly differentially regulated showing more than 200-fold change upon fungal-inoculation. Some of the miRNAs were identified as fungal-inoculation responsive for the first time. The analyses showed that some of the differentially regulated miRNAs targeted resistance-related genes such as LRR, glucuronosyl transferase, peroxidase and Pto kinase. The comparison of the two miRNA-microarray analyses indicated that fungal-responsive wheat miRNAs were differentially regulated in pathogen- and cultivar-specific manners.Öğe Transcriptome analysis of wheat inoculated with Fusarium graminearum(Frontiers Media Sa, 2015) Erayman, Mustafa; Turktas, Mine; Akdogan, Guray; Gurkok, Tugba; Inal, Behcet; Ishakoglu, Emre; Ilhan, EmrePlants are frequently exposed to microorganisms like fungi, bacteria, and viruses that cause biotic stresses. Fusarium head blight (FHB) is an economically risky wheat disease, which occurs upon Fusarium graminearum (Fg) infection. Moderately susceptible (cv. Mizrak 98) and susceptible (cv. Gun 91) winter type bread wheat cultivars were subjected to transcriptional profiling after exposure to Fg infection. To examine the early response to the pathogen in wheat, we measured gene expression alterations in mock and pathogen inoculated root crown of moderately susceptible (MS) and susceptible cultivars at 12 hours after inoculation (hai) using 12X135K microarray chip. The transcriptome analyses revealed that out of 39,179 transcripts, 3668 genes in microarray were significantly regulated at least in one time comparison. The majority of differentially regulated transcripts were associated with disease response and the gene expression mechanism. When the cultivars were compared, a number of transcripts and expression alterations varied within the cultivars. Especially membrane related transcripts were detected as differentially expressed. Moreover, diverse transcription factors showed significant fold change values among the cultivars. This study presented new insights to understand the early response of selected cultivars to the Fg at 12 hai. Through the KEGG analysis, we observed that the most altered transcripts were associated with starch and sucrose metabolism and gluconeogenesis pathways.