Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Uzun, S. Sinem" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Emotion primitives estimation from EEG signals using Hilbert Huang Transform
    (2012) Uzun, S. Sinem; Yildirim, Serdar; Yildirim, Esen
    This paper addresses the problem of emotion primitives estimation using information obtained from EEG signals. The EEG data were collected from 18 subjects, 9 male and 9 female, aged from 19 to 26 years old. We used audio clips from International Affective Digital Sounds (IADS) as stimuli for emotion elicitation. Hilbert-Huang Transform, a proper method for non-linear and non-stationary signal processing, was used for feature extraction. EEG signals were first decomposed into their Intrinsic Mode Functions (IMFs). Then 990 features were computed from the first five IMFs. To identify the most salient features and eliminate the redundant and irrelevant ones, we performed correlation based feature selection (CFS). This feature selection process reduced the number of features dramatically while increasing the performance remarkably. In this work, we used support vector regression for estimation of each emotion primitive value. Regression mean absolute error values and their standard deviations over all subjects for valence, activation, and dominance were obtained as 1.11 (0.13), 0.65 (0.09) and 0.38 (0.06) respectively. © 2012 IEEE.

| Hatay Mustafa Kemal Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Hatay Mustafa Kemal Üniversitesi, Hatay, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim