Yazar "Yildiz, Abdulazim" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Experimental and numerical analyses of circular footing on geogrid-reinforced granular fill underlain by soft clay(Springer Heidelberg, 2014) Demir, Ahmet; Yildiz, Abdulazim; Laman, Mustafa; Ornek, MuratExperimental and numerical investigations into the bearing capacity of circular footing on geogrid-reinforced compacted granular fill layer overlying on natural clay deposit have been conducted in this study. A total of 8 field tests were carried out using circular model rigid footing with a diameter of 0.30 m. 3D numerical analyses were performed to simulate soil behavior using finite element program Plaxis 3D Foundation. The results from the FE analysis are in very good agreement with the experimental observations. It is shown that the degree of improvement depends on thickness of granular fill layer and properties and configuration of geogrid layers. Parameters of the experimental and numerical analyses include depth of first reinforcement, vertical spacing of reinforcement layers. The results indicate that the use of geogrid-reinforced granular fill layers over natural clay soils has considerable effects on the bearing capacity and significantly reduces the lateral displacement and vertical displacement of the footing.Öğe Field Test of Circular Footings on Reinforced Granular Fill Layer Overlying a Clay Bed(Amer Soc Testing Materials, 2012) Laman, Mustafa; Yildiz, Abdulazim; Ornek, Murat; Demir, AhmetThe ultimate bearing capacity and settlement of a circular shallow rigid plate on compacted granular fill layer with and without geogrid reinforcement overlying on natural clay deposit exhibiting low bearing capacity and large settlement have been investigated. A total of 15 field tests were carried out using a circular model rigid plate with a diameter of 0.90 m. This study has been initially directed to evaluate the beneficial effects of the compacted granular fill layer on natural clay deposit for the shallow rigid plate performance. Then, the reinforcing effect of the top granular fill layer with horizontal layers of welded geogrid reinforcement on the bearing capacity and settlement has been studied. Parameters of the testing program include granular fill thickness, depth of first reinforcement, vertical spacing of reinforcement layers, and number of reinforcement layers. Bearing capacity ratio (BCR) and percentage reduction in settlement (PRS) were defined to evaluate improvement performance. Based on the test results, the effect of the granular fill and welded geogrid reinforcement on the bearing capacity and settlement are discussed. The results indicate that the use of granular fill layers over natural clay soils has considerable effects on the bearing capacity and settlement characteristics. The construction of granular fill layer with welded geogrid reinforcement over clay deposit helps in redistributing the applied load to a wider area. It has been observed that the use of welded geogrid reinforcement in granular fill layer provides additional improvement of bearing capacity and provides reduction in settlement of the rigid plate up to 80 and 60 %, respectively.Öğe Large scale field tests on geogrid-reinforced granular fill underlain by clay soil(Elsevier Sci Ltd, 2013) Demir, Ahmet; Laman, Mustafa; Yildiz, Abdulazim; Ornek, MuratThis study aims at experimentally explaining the potential benefits of geogrid reinforced soil footings using large scale field tests. A total of 16 field tests were carried out to evaluate the effects of replacing natural clay soil with stiffer granular fill layer and single-multiple layers of geogrid reinforcement placed into granular fill below circular footings. The large scale field tests were performed using different size of the circular footing diameters which have 0.30, 0.45, 0.60 and 0.90 m. The results of testing program are presented in terms of subgrade modulus and bearing capacity. These values were calculated for each test at settlements of 10, 20 and 30 mm. Based on the test results, it is shown that the use of granular fill and geogrid for reinforced soil footings (RSF) have considerable effects on the subgrade modulus and bearing capacity. Finally, the field test results are compared to the analytical methods proposed by different researchers including the statistical correlations. (C) 2012 Published by Elsevier Ltd.Öğe Numerical analysis of circular footings on natural clay stabilized with a granular fill(2012) Ornek, Murat; Demir, Ahmet; Yildiz, Abdulazim; Laman, MustafaIn this study, numerical predictions of the scale effect for circular footings supported by partially replaced, compacted, layers on natural clay deposits are presented. The scaleeffect phenomenon was analyzed according to the footing sizes. Numerical analyses were carried out using an axisymmetric, two-dimensional, finite-element program. Before conducting the analysis, the validity of the constitutive model was validated using field tests performed by authors with seven different footing diameters up to 0.90 m and with three different partial replacement thicknesses. It is shown that the behavior of the circular footings on natural clay soil and the partial replacement system can be reasonably well represented by the Mohr Coulomb model. The Mohr- Coulomb model parameters were derived from the results of conventional laboratory and field tests. After achieving a good consistency between the results of the test and the numerical analysis, the numerical analyses were continued by increasing the footing diameter up to 25 m, considering the partial replacement thickness up to two times the footing diameter. The results of this parametric study showed that the stabilization had a considerable effect on the bearing capacity of the circular footings and for a given value of H/D the magnitude of the ultimate bearing capacity increases in a nonlinear manner with the footing diameter. The Bearing Capacity Ratio (BCR) was defined to evaluate the improved performance of the reinforced system. It was found, based on numerical and field-test results that the BCR of the partially replaced, natural clay deposits increased with an increase in the footing diameter and there was no significant scale effect of the circular footing resting on natural clay deposits. Copyright © 2014, AGS.Öğe NUMERICAL ANALYSIS OF CIRCULAR FOOTINGS ON NATURAL CLAY STABILIZED WITH A GRANULAR FILL(Univ Maribor, 2012) Ornek, Murat; Demir, Ahmet; Laman, Mustafa; Yildiz, AbdulazimIn this study, numerical predictions of the scale effect for circular footings supported by partially replaced, compacted, layers on natural clay deposits are presented. The scale-effect phenomenon was analyzed according to the footing sizes. Numerical analyses were carried out using an axisymmetric, two-dimensional, finite-element program. Before conducting the analysis, the validity of the constitutive model was validated using field tests performed by authors with seven different footing diameters up to 0.90 m and with three different partial replacement thicknesses. It is shown that the behavior of the circular footings on natural clay soil and the partial replacement system can be reasonably well represented by the Mohr Coulomb model. The Mohr-Coulomb model parameters were derived from the results of conventional laboratory and field tests. After achieving a good consistency between the results of the test and the numerical analysis, the numerical analyses were continued by increasing the footing diameter up to 25 m, considering the partial replacement thickness up to two times the footing diameter. The results of this parametric study showed that the stabilization had a considerable effect on the bearing capacity of the circular footings and for a given value of H/D the magnitude of the ultimate bearing capacity increases in a nonlinear manner with the footing diameter. The Bearing Capacity Ratio (BCR) was defined to evaluate the improved performance of the reinforced system. It was found, based on numerical and field-test results that the BCR of the partially replaced, natural clay deposits increased with an increase in the footing diameter and there was no significant scale effect of the circular footing resting on natural clay deposits.Öğe Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil(Japanese Geotechnical Soc, 2012) Ornek, Murat; Laman, Mustafa; Demir, Ahmet; Yildiz, AbdulazimThe shortage of available and suitable construction sites in city centres has led to the increased use of problematic areas, where the bearing capacity of the underlying deposits is very low. The reinforcement of these problematic soils with granular fill layers is one of the soil improvement techniques that are widely used. Problematic soil behaviour can be improved by totally or partially replacing the inadequate soils with layers of compacted granular fill. The study presented herein describes the use of artificial neural networks (ANNs), and the multi-linear regression model (MLR) to predict the bearing capacity of circular shallow footings supported by layers of compacted granular fill over natural clay soil. The data used in running the network models have been obtained from an extensive series of field tests, including large-scale footing diameters. The field tests were performed using seven different footing diameters, up to 0.90 m, and three different granular fill layer thicknesses. The results indicate that the use of granular fill layers over natural clay soil has a considerable effect on the bearing capacity characteristics and that the ANN model serves as a simple and reliable tool for predicting the bearing capacity of circular footings in stabilized natural clay soil. (C) 2012. The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.