Yazar "Yucel, Hasan E." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of Fly Ash and PVA Fiber on Microstructural Damage and Residual Properties of Engineered Cementitious Composites Exposed to High Temperatures(Asce-Amer Soc Civil Engineers, 2011) Sahmaran, Mustafa; Ozbay, Erdogan; Yucel, Hasan E.; Lachemi, Mohamed; Li, Victor C.This paper discusses the influence of high volumes of fly ash and micro polyvinyl alcohol (PVA) fibers on the fire resistance and microstructure of engineered cementitious composites (ECC). Composites containing two different contents of fly ash as a replacement for cement (55 and 70% by weight of total cementitious materials) are examined. To determine the effects of microfibers and ultrahigh ductility of ECC, ECC matrix mixtures of similar composition except PVA fiber are also produced and tested for the fire resistance. The mixtures are exposed to temperatures up to 800 degrees C for one hour. Fire resistances of the mixtures are then quantified in terms of the residual mechanical properties (strength, stress-strain curve, deflection, and stiffness) and mass loss. The role of PVA fibers and fly ash is discussed through the analysis of microstructure and fiber-matrix interactions as a function of heat treatment. The microstructural characterization is examined before and after exposure to fire deterioration by using scanning electron microscopy and the pore size distribution is obtained by mercury intrusion porosimetry. Results indicate that adding micro PVA fiber to the ECC matrix substantially improves the fire resistance and eliminates the explosive spalling behaviors of the ECC matrix. Fire resistance of ECC mixtures is further improved with the increase of fly ash content. DOI: 10.1061/(ASCE)MT.1943-5533.0000335. (C) 2011 American Society of Civil Engineers.Öğe Effect of Sustained Flexural Loading on Self-Healing of Engineered Cementitious Composites(Japan Concrete Inst, 2013) Ozbay, Erdogan; Sahmaran, Mustafa; Yucel, Hasan E.; Erdem, Tahir K.; Lachemi, Mohamed; Li, Victor C.This paper aims to clarify the effects of sustained flexural loading on the self-healing behavior of Engineered Cementitious Composites (ECC). Prismatic specimens of ECC mixtures with two different levels of Class-F fly ash content were cast. Flexural loading was applied to the specimens at 28 days age to generate severe amount of microcracks. The specimens were then stored under continuous water or air exposures with or without sustained mechanical loading, for up to 90 days. For specimens under sustained mechanical loading, the applied sustained load level was 60% of the ultimate flexural strength. The extent of damage was determined as a percentage of loss in mechanical properties. The influences of different exposure regimes and sustained mechanical loading on mechanical properties of ECC mixtures were investigated. Microstructural changes within the microcracks were also analyzed.Öğe Frost resistance and microstructure of Engineered Cementitious Composites: Influence of fly ash and micro poly-vinyl-alcohol fiber(Elsevier Sci Ltd, 2012) Sahmaran, Mustafa; Ozbay, Erdogan; Yucel, Hasan E.; Lachemi, Mohamed; Li, Victor C.One of the most damaging environmental conditions to concrete structure is cyclic freezing and thawing. This paper discusses the influence of the high volumes of fly ash (FA) and micro poly-vinyl-alcohol (PVA) fibers on the cyclic freeze-thaw resistance and microstructure of the Engineered Cementitious Composites (ECC). ECC mixtures with two different FA-cement (FA/C) ratios (1.2 and 2.2 by weight), and at constant water-cementitious materials (fly ash and cement) ratio of 0.27 are prepared. To compare the behavior of ECC with ECC matrix, all of the preceding properties are also investigated for ECC matrix mixtures of same composition without PVA fiber. For frost resistance, mixtures are exposed to the freeze and thaw cycles up to 300 cycles in accordance with ASTM C666, Procedure A. Experimental tests consist of measuring the residual mechanical properties (flexural strength, mid-span beam deflection and flexural stress - deflection curve), ultrasonic pulse velocity and mass loss. The roles of PVA fibers and FA are discussed through the analysis of microstructure and fiber-matrix interactions as function of frost exposure. The microstructural characterization by measuring pore size distributions is examined before and after exposure to frost deterioration by using mercury intrusion porosimetry (MIP). The air-void characteristics of mixtures are also studied using linear transverse method. Test results confirm that both ECC mixtures with high volumes of FA remain durable, and show a tensile strain capacity of more than 2% even after 300 freezing and thawing cycles. On the other hand, before completing 300 freezing and thawing cycles, matrix (ECC without fiber) specimens have severely deteriorated, requiring removal from the freezethaw machine. Therefore, results indicate that the addition of micro PVA fiber to the ECC matrix substantially improved the frost resistance. The results of freeze-thaw tests also indicated that the reduction of residual physical and mechanical properties with increasing number of freeze-thaw cycles is relatively more for ECC mixture with FA/C ratio of 2.2 than for ECC mixture with FA/C ratio of 1.2. (C) 2011 Elsevier Ltd. All rights reserved.Öğe Improving the workability and rheological properties of Engineered Cementitious Composites using factorial experimental design(Elsevier Sci Ltd, 2013) Sahmaran, Mustafa; Bilici, Zafer; Ozbay, Erdogan; Erdem, Tahir K.; Yucel, Hasan E.; Lachemi, MohamedIn the development of Engineered Cementitious Composites (ECC), micromechanics-based design theory is adopted to properly select the matrix constituents, fiber, and fiber-matrix interface properties to exhibit strain hardening and multiple cracking behaviors. Despite the micromechanics design constraints, practical applications show that the workability and rheological properties of matrix can affect the fiber dispersion uniformity, which have also direct concerns on composite mechanical properties. For this reason, in this research, parameters of micromechanics-based optimized ECC mixture design, which most possibly affecting the workability and rheological properties, are investigated. An experimental program that contains 36 different ECC mixtures was undertaken to quantitatively evaluate the combined effects of the following factors on workability and rheological properties: water-binder (w/b), sand-binder (s/b), superplasticizer-binder (SP/b) ratios and maximum aggregate size (D-max). A mini-slump cone, a Marsh cone and a rotational viscometer were used to evaluate the workability and rheological properties of ECC mixtures. Compressive strength and four point bending tests were used for mechanical characteristics of ECC mixtures at 28 days. The effects of studied parameters (w/b, s/b, SP/b and D-max) were characterized and analyzed using regression models, which can identify the primary factors and their interactions on the measured properties. Statistically significant regression models were developed for all tested parameters as function of w/b, s/b, SP/b and D-max. To find out the best possible ECC mixture under the range of parameters investigated for the desired workability and mechanical characteristics, a multi-objective optimization problem was defined and solved based on the developed regression models. Test results indicate that w/b, s/b and SP/b parameters affect the rheological and workability properties. On the other hand, for the range of studied aggregate sizes, D-max is found to be statistically insignificant on the rheological and workability properties of ECC. (c) 2012 Elsevier Ltd. All rights reserved.