On the generalized k-Fibonacci hyperbolic functions

dc.contributor.authorIpek, Ahmet
dc.date.accessioned2024-09-18T20:27:55Z
dc.date.available2024-09-18T20:27:55Z
dc.date.issued2010
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.description.abstractThe hyperbolic Fibonacci function, which is the being extension of Binet's formula for the Fibonacci number in continuous domain, transform the Fibonacci number theory into continuous theory because every identity for the hyperbolic Fibonacci function has its discrete analogy in the framework of the Fibonacci number. In this new paper, it is defined three important generalizations of the k-Fibonacci sine, cosine and quasi-sine hyperbolic functions and then many number of concepts and techniques that we learned in a standard setting for the k-Fibonacci sine, cosine and quasi-sine hyperbolic functions is carried over to the generalizations of these functions.en_US
dc.identifier.endpage484en_US
dc.identifier.issn0381-7032
dc.identifier.scopus2-s2.0-78649854707en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage467en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12483/10595
dc.identifier.volume97Aen_US
dc.identifier.wosWOS:000282531800038en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherCharles Babbage Res Ctren_US
dc.relation.ispartofArs Combinatoriaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHyperbolic functionsen_US
dc.subjectFibonacci hyperbolic functionsen_US
dc.titleOn the generalized k-Fibonacci hyperbolic functionsen_US
dc.typeArticleen_US

Dosyalar