Designing and validating an autoverification system of biochemical test results in Hatay Mustafa Kemal University, clinical laboratory

dc.contributor.authorGul, Bahar Unlu
dc.contributor.authorOzcan, Oguzhan
dc.contributor.authorDogan, Serdar
dc.contributor.authorArpaci, Abdullah
dc.date.accessioned2024-09-18T20:02:46Z
dc.date.available2024-09-18T20:02:46Z
dc.date.issued2022
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.description.abstractIntroduction: Autoverification (AV) is a postanalytical tool that uses algorithms to validate test results according to specified criteria. The Clinical and Laboratory Standard Institute (CLSI) document for AV of clinical laboratory test result (AUTO-10A) includes recommendations for laboratories needing guidance on implementation of AV algorithms. The aim was to design and validate the AV algorithm for biochemical tests. Materials and methods: Criteria were defined according to AUTO-10A. Three different approaches for algorithm were used as result limit checks, which are reference range, reference range +/- total allowable error, and 2nd and 98th percentile values. To validate the algorithm, 720 cases in middleware were tested. For actual cases, 3,188,095 results and 194,520 reports in laboratory information system (LIS) were evaluated using the AV system. Cohen's kappa (kappa) was calculated to determine the degree of agreement between seven independent reviewers and the AV system. Results: The AV passing rate was found between 77% and 85%. The highest rates of AV were in alanine transaminase (ALT), direct bilirubin (DBIL), and magnesium (Mg), which all had AV rates exceeding 85%. The most common reason for non-validated results was the result limit check (41%). A total of 328 reports evaluated by reviewers were compared to AV system. The statistical analysis resulted in a kappa value between 0.39 and 0.63 (P < 0.001) and an agreement rate between 79% and 88%. Conclusions: Our improved model can help laboratories design, build, and validate AV systems and be used as starting point for different test gro-ups.en_US
dc.identifier.doi10.11613/BM.2022.030704
dc.identifier.issn1330-0962
dc.identifier.issn1846-7482
dc.identifier.issue3en_US
dc.identifier.pmid35966256en_US
dc.identifier.scopus2-s2.0-85136837334en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.11613/BM.2022.030704
dc.identifier.urihttps://hdl.handle.net/20.500.12483/8020
dc.identifier.volume32en_US
dc.identifier.wosWOS:000870000800012en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherCroatian Soc Medical Biochemistry & Laboratory Medicineen_US
dc.relation.ispartofBiochemia Medicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectautomationen_US
dc.subjectbiochemistryen_US
dc.subjectlaboratory organization and managementen_US
dc.subjectvalidationen_US
dc.subjectevaluationen_US
dc.titleDesigning and validating an autoverification system of biochemical test results in Hatay Mustafa Kemal University, clinical laboratoryen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin / Full text
Boyut:
286.36 KB
Biçim:
Adobe Portable Document Format