Interactions Between Term Weighting and Feature Selection Methods on the Sentiment Analysis of Turkish Reviews

dc.authoridOzel, Selma Ayse/0000-0001-9201-6349
dc.contributor.authorParlar, Tuba
dc.contributor.authorOzel, Selma Ayse
dc.contributor.authorSong, Fei
dc.date.accessioned2024-09-18T20:56:55Z
dc.date.available2024-09-18T20:56:55Z
dc.date.issued2018
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.description17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing) -- APR 03-09, 2016 -- Mevlana Univ, Konya, TURKEYen_US
dc.description.abstractTerm weighting methods assign appropriate weights to the terms in a document so that more important terms receive higher weights for the text representation. In this study, we consider four term weighting and three feature selection methods and investigate how these term weighting methods respond to the reduced text representation. We conduct experiments on five Turkish review datasets so that we can establish baselines and compare the performance of these term weighting methods. We test these methods on the English reviews so that we can identify their differences with the Turkish reviews. We show that both tf and tp weighting methods are the best for the Turkish, while tp is the best for the English reviews. When feature selection is applied, tf * idf method with DFD and chi(2) has the highest accuracies for the Turkish, while tf * idf and tp methods with chi(2) have the best performance for the English reviews.en_US
dc.description.sponsorshipCukurova University Academic Research Project Unit [FDK-2015-3833]; Scientific and Technological Research Council of Turkey (TUBITAK) [TUBITAK-2214-A]en_US
dc.description.sponsorshipThis study was supported by Cukurova University Academic Research Project Unit under the grant no FDK-2015-3833 and by The Scientific and Technological Research Council of Turkey (TUBITAK) scholarship TUBITAK-2214-A.en_US
dc.identifier.doi10.1007/978-3-319-75487-1_26
dc.identifier.endpage346en_US
dc.identifier.isbn978-3-319-75487-1
dc.identifier.isbn978-3-319-75486-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-85044423471en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage335en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-75487-1_26
dc.identifier.urihttps://hdl.handle.net/20.500.12483/12183
dc.identifier.volume9624en_US
dc.identifier.wosWOS:000540377700026en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofComputational Linguistics and Intelligent Text Processing, (Cicling 2016), Pt Iien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSentiment analysisen_US
dc.subjectFeature selectionen_US
dc.subjectTerm weightingen_US
dc.titleInteractions Between Term Weighting and Feature Selection Methods on the Sentiment Analysis of Turkish Reviewsen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
Tam Metin / Full Text
Boyut:
209.41 KB
Biçim:
Adobe Portable Document Format