Cycling Durability of Electrochromic W-Ti Oxide Thin Films: Optical Transmittance Data Signal Dual Degradation Modes

Yükleniyor...
Küçük Resim

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Electrochemical Soc Inc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Electrochemical degradation of electrochromic W oxide and W-Ti oxide thin films, prepared by reactive DC magnetron sputtering, was studied by voltammetric cycling in potential intervals from 1.5-4.0 to 2.0-4.0 V vs Li/Li+ in an electrolyte of lithium perchlorate in propylene carbonate. Cycling-dependent evolution of the upper and lower limits for the optical modulation range was critically dependent on potential interval. This phenomenon was analyzed through an extension of a previously formulated model for power-law dynamics; it was discovered that the upper and lower limits for the optical modulation range varied in distinctly different ways, and that only data acquired in the interval 2.0-4.0 V vs Li/Li+ could be reconciled with dispersive chemical kinetics. We thus find that our data on optical transmittance degradation lends strong support to the existence of dual degradation modes for electrochromism upon extended electrochemical cycling. This result is of great importance for the development of highly durable electrochromic devices such as smart windows for energy-efficient buildings. The present article is a sequel to a recent publication of ours [J. Electrochem. Soc., 166, H795 (2019)]. (c) 2020 The Electrochemical Society (ECS). Published on behalf of ECS by IOP Publishing Limited.

Açıklama

Anahtar Kelimeler

Efficiency, Wo3

Kaynak

Journal of The Electrochemical Society

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

167

Sayı

2

Künye