Comparison of Wavelets for Classification of Cognitive EEG Signals
[ N/A ]
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this work, different wavelet types, that have been frequently used in EEG signal analysis and classification, are compared for cognitive EEG classification. EEG signals are collected from 18 healthy subjects during math processing and simple text reading. Symlet, coiflet and bior wavelet types are used for feature extraction and classification performances of BayesNet and J48 classifiers are compared. The best true positive rate of 90.6% is obtained using Boir 2.4 wavelet type with J48 classifier.
Açıklama
23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY
Anahtar Kelimeler
Symlet, Coiflet, Biorthogonal, Discrete Wavelet Transform, EEG Classification
Kaynak
2015 23rd Signal Processing and Communications Applications Conference (Siu)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A