Suspended sediment estimation using an artificial intelligence approach

dc.authorscopusid58947107600
dc.authorscopusid8904071600
dc.authorscopusid56898997000
dc.contributor.authorDemirci, Mustafa
dc.contributor.authorÜneş, Fatih
dc.contributor.authorSaydemir, Sebahattin
dc.date.accessioned2024-09-19T15:47:17Z
dc.date.available2024-09-19T15:47:17Z
dc.date.issued2015
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.description.abstractForecasting of sediment concentration in rivers is a very important process for water resources assignment development and management. In this paper, a neural network approach is proposed to predict suspended sediment concentration from streamflow. A comparison was performed between artificial neural network, sediment rating-curve and multilinear regression models. It was based on a 5 years period of continuous streamflow, suspended sediment concentration and mean water temperature data of West Virginia, Little Coal River, Danville station operated by the United States Geological Survey. Based on comparison of the results, it is found that the artificial neural network model gives better estimates than the sediment rating-curve and multilinear regression techniques. © Springer International Publishing Switzerland 2015.en_US
dc.identifier.doi10.1007/978-3-319-14696-6_6
dc.identifier.endpage95en_US
dc.identifier.isbn978-331914696-6
dc.identifier.isbn978-331914695-9
dc.identifier.scopus2-s2.0-84943772308en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage83en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-319-14696-6_6
dc.identifier.urihttps://hdl.handle.net/20.500.12483/15083
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishingen_US
dc.relation.ispartofSediment Mattersen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectMulti-linear regressionen_US
dc.subjectNeural networken_US
dc.subjectSediment rating curveen_US
dc.subjectSuspended sedimenten_US
dc.titleSuspended sediment estimation using an artificial intelligence approachen_US
dc.typeBook Chapteren_US

Dosyalar