Falling Dynamics of SARS-CoV-2 as a Function of Respiratory Droplet Size and Human Height

dc.authoridAydin, Ismail Erkan/0000-0003-3552-5459
dc.authoridaydin savas, seckin/0000-0002-9389-2196
dc.authoridEvrendilek, Fatih/0000-0003-1099-4363
dc.authoridEvrendilek, Deniz/0000-0002-4699-4595
dc.contributor.authorAydin, Mehmet
dc.contributor.authorEvrendilek, Fatih
dc.contributor.authorSavas, Seckin Aydin
dc.contributor.authorAydin, Ismail Erkan
dc.contributor.authorEvrendilek, Deniz Eren
dc.date.accessioned2024-09-18T19:47:57Z
dc.date.available2024-09-18T19:47:57Z
dc.date.issued2020
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.description.abstractPurpose The purpose of this study is to quantify the motion dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods Three physical models of Newton's and Stokes's laws with(out) air resistance in the calm air are used to determine the falling time and velocity regimes of SARS-CoV-2 with(out) a respiratory water droplet of 1 to 2000 micrometers (mu m) in diameter of an infected person of 0.5 to 2.6 m in height. Results The horizontal distance travelled by SARS-CoV-2 in free fall from 1.7 m was 0.88 m due to breathing or talking and 2.94 m due to sneezing or coughing. According to Newton's laws of motion with air resistance, its falling velocity and time from 1.7 m were estimated at 3.95 x 10(-2)m s(-1)and 43 s, respectively. Large droplets > 100 mu m reached the ground from 1.7 m in less than 1.6 s, while the droplets >= 30 mu m fell within 4.42 s regardless of the human height. Based on Stokes's law, the falling time of the droplets encapsulating SARS-CoV-2 ranged from 4.26 x 10(-3)to 8.83 x 10(4) s as a function of the droplet size and height. Conclusion The spread dynamics of the COVID-19 pandemic is closely coupled to the falling dynamics of SARS-CoV-2 for which Newton's and Stokes's laws appeared to be applicable mostly to the respiratory droplet size >= 237.5 mu m and <= 237.5 mu m, respectively. An approach still remains to be desired so as to better quantify the motion of the nano-scale objects.en_US
dc.identifier.doi10.1007/s40846-020-00575-y
dc.identifier.endpage886en_US
dc.identifier.issn1609-0985
dc.identifier.issn2199-4757
dc.identifier.issue6en_US
dc.identifier.pmid33100940en_US
dc.identifier.scopus2-s2.0-85092691168en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage880en_US
dc.identifier.urihttps://doi.org/10.1007/s40846-020-00575-y
dc.identifier.urihttps://hdl.handle.net/20.500.12483/7246
dc.identifier.volume40en_US
dc.identifier.wosWOS:000581026000001en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofJournal of Medical and Biological Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject2019-nCoVen_US
dc.subjectSARS-CoV-2en_US
dc.subjectCOVID-19en_US
dc.subjectNewton's lawsen_US
dc.subjectStokes's lawen_US
dc.titleFalling Dynamics of SARS-CoV-2 as a Function of Respiratory Droplet Size and Human Heighten_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
7246.pdf
Boyut:
3.09 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text