Mechanical Properties of Nanocrystalline Tetragonal Zirconia Stabilized with CaO, MgO and Y2O3
Yükleniyor...
Tarih
2013
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Polish Acad Sciences Inst Physics
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The citrate gel method, similar to the polymerized complex method, was used to synthesize homogeneous tetragonal zirconia at 1000 degrees C. Nanocrystalline tetragonal phase has been fully stabilized at wide temperature range with 10 mol.% CaO, MgO, and Y2O3 addition. Scanning electron microscopy, X-ray diffraction, and microhardness tests are used to characterize synthesized materials. The grain size and dislocation density were calculated from X-ray diffraction data. The examined material exhibits indentation size effect behavior. Results revealed that the Vickers and Knoop microhardness are dependent on indentation test load. Geometrically necessary dislocation model and modified proportional resistance model are used to analyze the load dependence of the microhardness. The highest hardness values were obtained for the samples with CaO addition; however the lowest values were acquired for sample stabilized with Y2O3 by using both Knoop and Vickers techniques. This situation might be explained using the Hall-Fetch relation. DOI: 10.12693/APhysPolA.123.296
Açıklama
2nd International Congress on Advances in Applied Physics and Materials Science (APMAS) -- APR 26-29, 2012 -- Antalya, TURKEY
Anahtar Kelimeler
Solid-Solutions, Crystallization
Kaynak
Acta Physica Polonica A
WoS Q Değeri
Q4
Scopus Q Değeri
Q3
Cilt
123
Sayı
2