Binary Classification Performances of Emotion Classes for Turkish Emotional Speech
[ N/A ]
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Emotion recognition from speech plays important role for natural human-computer interaction. This study investigates binary classification performances of 4 fundamental emotion classes in Turkish Emotional Speech (TurES) Database using acoustic features for various classifiers. Results shows that Angry emotion class has higher classification rate (70%-80%) than others; lowest classification rate is obtained as 64% for Happy-Neutral emotion pair. Best classification results are obtained with J48 (C4.5) classifier for all emotion pairs.
Açıklama
23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY
Anahtar Kelimeler
binary classification, emotional speech, categorical classification, TurES database, pattern recognition
Kaynak
2015 23rd Signal Processing and Communications Applications Conference (Siu)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A