THE k-GENERALIZED LUCAS NUMBERS CLOSE TO A POWER OF 2
dc.contributor.author | Acikel, Abdullah | |
dc.contributor.author | Irmak, Nurettin | |
dc.contributor.author | Szalay, Laszlo | |
dc.date.accessioned | 2024-09-18T20:28:16Z | |
dc.date.available | 2024-09-18T20:28:16Z | |
dc.date.issued | 2023 | |
dc.department | Hatay Mustafa Kemal Üniversitesi | en_US |
dc.description.abstract | Let k >= 2 be a fixed integer. The k-generalized Lucas sequence {L-n((k))}(n)>=(0) starts with the positive integer initial values k, 1, 3, ..., 2(k-1)-1, and each term afterward is the sum of the k consecutive preceding elements. An integer n is said to be close to a positive integer m if n satisfies |n-m| < root m. In this paper, we combine these two concepts. We solve completely the diophantine inequality |L-n((k)) - 2(m) | < 2(m/2) in the non-negative integers k, n, and m. This problem is equivalent to the resolution of the equation L-n((k)) = 2(m) + t with the condition |t| < 2(m/2), t is an element of Z. We also discovered a new formula for L-n((k)) which was very useful in the investigation of one particular case of the problem. | en_US |
dc.description.sponsorship | National Research, Development and Innovation Office [2019-2.1.11-TET-2020-00165]; Hungarian National Foundation for Scientific Research [128088, 130909]; Slovak Scientific Grant Agency [VEGA 1/0776/21] | en_US |
dc.description.sponsorship | For L. Szalay, the research was supported in part by National Research, Development and Innovation Office Grant 2019-2.1.11-TET-2020-00165, by Hungarian National Foundation for Scientific Research Grant No. 128088 and No. 130909, and by the Slovak Scientific Grant Agency VEGA 1/0776/21. | en_US |
dc.identifier.doi | 10.1515/ms-2023-0064 | |
dc.identifier.endpage | 882 | en_US |
dc.identifier.issn | 0139-9918 | |
dc.identifier.issn | 1337-2211 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85168093054 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 871 | en_US |
dc.identifier.uri | https://doi.org/10.1515/ms-2023-0064 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12483/10818 | |
dc.identifier.volume | 73 | en_US |
dc.identifier.wos | WOS:001043701900005 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Walter De Gruyter Gmbh | en_US |
dc.relation.ispartof | Mathematica Slovaca | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | k-generalized Lucas sequence | en_US |
dc.subject | Baker method | en_US |
dc.subject | LLL reduction | en_US |
dc.title | THE k-GENERALIZED LUCAS NUMBERS CLOSE TO A POWER OF 2 | en_US |
dc.type | Article | en_US |