Genetic Variation and Possible Mechanisms Driving the Evolution of Worldwide Fig mosaic virus Isolates
Loading...
Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Phytopathological Soc
Access Rights
info:eu-repo/semantics/openAccess
Abstract
Fig mosaic virus (FMV) is a multipartite negative-sense RNA virus infecting fig trees worldwide. FMV is transmitted by vegetative propagation and grafting of plant materials, and by the eriophyid mite Aceria ficus. In this work, the genetic variation and evolutionary mechanisms shaping FMV populations were characterized. Nucleotide sequences from four genomic regions (each within the genomic RNAs 1, 2, 3, and 4) from FMV isolates from different countries were determined and analyzed. FMV genetic variation was low, as is seen for many other plant viruses. Phylogenetic analysis showed some geographically distant FMV isolates which clustered together, suggesting long-distance migration. The extent of migration was limited, although varied, between countries, such that FMV populations of different countries were genetically differentiated. Analysis using several recombination algorithms suggests that genomes of some FMV isolates originated by reassortment of genomic RNAs from different genetically similar isolates. Comparison between nonsynonymous and synonymous substitutions showed selection acting on some amino acids; however, most evolved neutrally. This and neutrality tests together with the limited gene flow suggest that genetic drift plays an important role in shaping FMV populations.
Description
Keywords
Leaf-Curl-Virus, Sense Rna Virus, Population-Genetics, Plant-Virus, Dna, Recombination, Variability, Fitness, Protein, Multipartite
Journal or Series
Phytopathology
WoS Q Value
Q1
Scopus Q Value
Q1
Volume
104
Issue
1