Thermodynamically consistent coupled viscoplastic damage model for perforation and penetration in metal matrix composite materials

dc.authoridVoyiadjis, George/0000-0002-7965-6592
dc.authoridpalazotto, anthony/0000-0003-0904-4619
dc.authoridpalazotto, Anthony/0000-0002-1671-8389
dc.contributor.authorVoyiadjis, George Z.
dc.contributor.authorDeliktas, Babur
dc.contributor.authorPalazotto, Anthony N.
dc.date.accessioned2024-09-18T20:32:47Z
dc.date.available2024-09-18T20:32:47Z
dc.date.issued2009
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.description.abstractAccurate modeling and efficient analysis of the metal matrix composite materials failure mechanism during high velocity impact conditions is still the ultimate goal for many researchers. The objective is to develop a micromechanical constitutive model that can effectively simulate the high impact damage problem of the metal matrix composite materials. Therefore in this paper, a multiscale micromechanical constitutive model that couples the anisotropic damage mechanism with the viscoplastic deformation is presented here as a solution to this situation. This coupled viscoplastic damage model is formulated based on thermodynamic laws. Nonlinear continuum mechanics is used for this heterogeneous media that assesses a strong coupling between viscoplasticity and anisotropic damage. It includes the strong directional effect of the fiber on the evolution of the back stress and the development of the viscoplastic strain in the material behavior for high velocity impact damage related problems. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipAFSOR [FA8601-07-P-0302]; Science and Technology Council of Turkey (TUBITAK)en_US
dc.description.sponsorshipThe first author acknowledges the financial support provided for this research by the AFSOR through the Air Force Institute of Technology at WPAFB, Ohio, under Grant No. FA8601-07-P-0302. The second author acknowledges the financial support provided for his research from the Science and Technology Council of Turkey (TUBITAK) under the 2219 International Postdoctoral research Scholarship Program.en_US
dc.identifier.doi10.1016/j.compositesb.2009.01.008
dc.identifier.endpage433en_US
dc.identifier.issn1359-8368
dc.identifier.issn1879-1069
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-67651097654en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage427en_US
dc.identifier.urihttps://doi.org/10.1016/j.compositesb.2009.01.008
dc.identifier.urihttps://hdl.handle.net/20.500.12483/11119
dc.identifier.volume40en_US
dc.identifier.wosWOS:000269111600004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofComposites Part B-Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMetal-matrix composites (MMCs)en_US
dc.subjectAnisotropyen_US
dc.subjectImpact behaviouren_US
dc.subjectDamage mechanicsen_US
dc.subjectPerforation and penetrationen_US
dc.titleThermodynamically consistent coupled viscoplastic damage model for perforation and penetration in metal matrix composite materialsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
Tam Metin / Full Text
Boyut:
206.95 KB
Biçim:
Adobe Portable Document Format