Solution-processed nanostructured ZnO/CuO composite films and improvement its physical properties by lustrous transition metal silver doping
Yükleniyor...
Dosyalar
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper has reported the fabrication and characterization of pristine, and silver (Ag)-doped nanostructured ZnO/CuO composite thin films that have not been previously reported. The thin films were synthesized by the successive ionic layer adsorption and reaction (SILAR) technique. The morphological, crystalline structure, optical and electrical characterizations of the films have been achieved utilizing scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectrum (FTIR) analysis, ultraviolet-visible (UV-Vis) spectrophotometry and the four-point probe measurements. Particle sizes of pristine and Ag-doped ZnO/CuO thin films were found to vary from 32 to 58 nm. Crystallite size was changed from 16.40 to 18.90 nm with changing Ag dopant in the ZnO/CuO composite film. FTIR spectra that have the absorption peaks at similar to 725 and similar to 510 cm(-1) referred to the stretching vibration of Zn-O and Cu-O bonds during the synthesis of ZnO/CuO nanofilms. The bandgap values of ZnO/CuO composite films increased from 2.05 to 2.36 eV as Ag content increased from 0 to 2 M%. The activation energies of the samples were obtained from the Arrhenius plots of sigma versus 1/T. The multiple activation process was observed. It was noteworthy that Ag-doping results in a significant difference in conductivity at all temperature values.
Açıklama
Anahtar Kelimeler
Optical-Properties, Doped Zno, Thin-Films, Electrical-Properties, Nanoparticles, Al, Nanocomposites, Antibacterial, Conductivity, Performance
Kaynak
Journal of Materials Science-Materials in Electronics
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
31
Sayı
17