A New Graph Method Based on Deep Learning for Smart Intersections

dc.authoridTURAN, ERHAN/0000-0003-4423-0118
dc.authoridDANDIL, Besir/0000-0002-3625-5027
dc.contributor.authorTuran, Erhan
dc.contributor.authorDandil, Besir
dc.contributor.authorAvci, Engin
dc.date.accessioned2024-09-18T21:00:21Z
dc.date.available2024-09-18T21:00:21Z
dc.date.issued2022
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.description6th International Conference on Smart City Applications -- OCT 27-29, 2021 -- Safranbolu, TURKEYen_US
dc.description.abstractThe main reason for congestion in traffic is unnecessary waiting time at intersections. Economic and environmental improvement can be directly achieved by reducing the waiting time at the junction points. The controller, in which the signaling values are calculated by taking the vehicles and pedestrians into consideration in social terms, needs to be developed. Maximum flow in traffic at a single junction can cause a bottleneck at the next junction. Therefore, junction signaling times should be calculated in relation to each other for a certain region and line. Rule and learning based methods cannot respond to multiple intersections and unlikely situations. In order to provide maximum flow dynamically, a new Graph algorithm based on deep learning is needed. In this study, a deep learning-based Graph method has been proposed in which rule and learning-based methods will be used against unlikely situations and to eliminate the single junction bottleneck disadvantage.en_US
dc.identifier.doi10.1007/978-3-030-94191-8_17
dc.identifier.endpage221en_US
dc.identifier.isbn978-3-030-94191-8
dc.identifier.isbn978-3-030-94190-1
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.scopus2-s2.0-85126342357en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage211en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-94191-8_17
dc.identifier.urihttps://hdl.handle.net/20.500.12483/12621
dc.identifier.volume393en_US
dc.identifier.wosWOS:000928840400017en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartof6th International Conference on Smart City Applicationsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTraffic junction signalingen_US
dc.subjectDeep learningen_US
dc.subjectGraph algorithmen_US
dc.subjectMax flow algorithmen_US
dc.titleA New Graph Method Based on Deep Learning for Smart Intersectionsen_US
dc.typeConference Objecten_US

Dosyalar