Improving Pseudo Random Number Generator Using Artificial Neural Networks
dc.contributor.author | Yayik, Apdullah | |
dc.contributor.author | Kutlu, Yakup | |
dc.date.accessioned | 2024-09-18T20:33:00Z | |
dc.date.available | 2024-09-18T20:33:00Z | |
dc.date.issued | 2013 | |
dc.department | Hatay Mustafa Kemal Üniversitesi | en_US |
dc.description | 21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUS | en_US |
dc.description.abstract | Pseudo-random number generators generate sequent of digits that cannot be expected before. Random number generators are used in lots of studies especially physical and statical implementations. In this paper; by using Multi-Layer Perceptron Neural Network, a traditional random number generator is strengthened. In the end of the study; both of random number generators are tested by some randomness tests of National Institute of Standard Technology test suite. As a result, it is learned that Neural Networks can generate good random numbers. | en_US |
dc.identifier.isbn | 978-1-4673-5563-6 | |
dc.identifier.isbn | 978-1-4673-5562-9 | |
dc.identifier.issn | 2165-0608 | |
dc.identifier.scopus | 2-s2.0-84880868534 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12483/11256 | |
dc.identifier.wos | WOS:000325005300334 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2013 21st Signal Processing and Communications Applications Conference (Siu) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Multi-Layer Perceptron | en_US |
dc.subject | Neural Networks | en_US |
dc.subject | Pseudo Random Number Generators | en_US |
dc.title | Improving Pseudo Random Number Generator Using Artificial Neural Networks | en_US |
dc.type | Conference Object | en_US |