Determination of fracture toughness of boride layers grown on Co1.21Cr1.82Fe1.44Mn1.32Ni1.12Al0.08B0.01 high entropy alloy by nanoindentation
Yükleniyor...
Dosyalar
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Sci Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Multiphase boride layers consisting of (CoFe)2B, (Fe0.4Mn0.6)B, Cr2Ni3B6 and (Cr0.4Mn0.6)B were formed on the surface of Co1.21Cr1.82Fe1.44Mn1.32Ni1.12Al0.08B0.01 high entropy alloy by powder-pack boronizing at 900 degrees C, 950 degrees C and 1000 degrees C for 4 h. The nanohardness (H), modulus of elasticity (E) and fracture toughness (KC) of the multiphase boride layers were determined based on the load-displacement (P-h) curves obtained in the nanoindentation tests. Three distinct regions were identified on the cross-sections of the produced layers: an outer layer consisting of MeB-type borides, an inner layer consisting of Me2B-type borides and the transition zone. The microstructural aspects of the layers were investigated using scanning electron microscopy, energy-dispersive Xray spectroscopy, and X-ray diffraction. Detailed analysis of the influence of the chemical composition on hardness, elastic modulus and fracture toughness in the three regions indicated that the most critical factor influencing the mechanical properties was the presence of chromium, iron and cobalt borides in the microstructure. Especially the formation of chromium borides reduced the fracture toughness of the transition zone.
Açıklama
Anahtar Kelimeler
High entropy alloys, Boriding, Nanoindentation, Fracture toughness
Kaynak
Ceramics International
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
48
Sayı
24