Patient specific seizure prediction algorithm using Hilbert-Huang Transform

dc.authorscopusid57188729974
dc.authorscopusid57198276954
dc.authorscopusid43262125900
dc.contributor.authorDuman, Firat
dc.contributor.authorÖzdemir, Nilüfer
dc.contributor.authorYildirim, Esen
dc.date.accessioned2024-09-19T15:41:18Z
dc.date.available2024-09-19T15:41:18Z
dc.date.issued2012
dc.departmentHatay Mustafa Kemal Üniversitesien_US
dc.descriptionIEEE Engineering in Medicine and Biology Society (IEEE-EMBS); Key Lab. Health Informatics, Chin. Acad. Sci. (HI-CAS); CAS-SIAT Institute of Biomedical and Health Engineering (IBHE)en_US
dc.descriptionIEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2012. In Conj. with the 8th Int. Symp.on Medical Devices and Biosensors and the 7th Int. Symp. on Biomedical and Health Engineering -- 2 January 2012 through 7 January 2012 -- Hong Kong and Shenzhen -- 91242en_US
dc.description.abstractEpilepsy is a neurological disorder that affects about 50 million people around the world. EEG signal processing plays an important role in detection and prediction of epileptic seizures. The aim of this study is to develop a method for early seizure prediction based on Hilbert-Huang Transform. In this patient specific method, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) and first 5 IMFs are used to obtain features for classification of preictal and interictal recordings. Proposed method was tested on Freiburg EEG database. A total of 58 hours of preictal data, prior to 87 seizures, and 490 hours of interictal data were examined. Algorithm resulted in 89.66% sensitivity (78 of 87 seizures) and 0.49 FPs/h using 30 seconds EEG segment with 50% overlap. © 2012 IEEE.en_US
dc.identifier.doi10.1109/BHI.2012.6211680
dc.identifier.endpage708en_US
dc.identifier.isbn978-145772177-9
dc.identifier.scopus2-s2.0-84864186967en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage705en_US
dc.identifier.urihttps://doi.org/10.1109/BHI.2012.6211680
dc.identifier.urihttps://hdl.handle.net/20.500.12483/14169
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofProceedings - IEEE-EMBS International Conference on Biomedical and Health Informatics: Global Grand Challenge of Health Informatics, BHI 2012en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlgorithmsen_US
dc.subjectBiomedical equipmenten_US
dc.subjectBiosensorsen_US
dc.subjectNeurologyen_US
dc.subjectEEG signal processingen_US
dc.subjectEEG signalsen_US
dc.subjectEpileptic seizuresen_US
dc.subjectHilbert Huang transformsen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectNeurological disordersen_US
dc.subjectPatient specificen_US
dc.subjectSeizure predictionen_US
dc.subjectSignal processingen_US
dc.titlePatient specific seizure prediction algorithm using Hilbert-Huang Transformen_US
dc.typeConference Objecten_US

Dosyalar