Soliton solutions for time fractional ocean engineering models with Beta derivative

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, the authors obtained the soliton and periodic wave solutions for time fractional symmetric regularized long wave equation (SRLW) and Ostrovsky equation (OE) both arising as a model in ocean engineering. For this aim modified extended tanh-function (mETF) is used. While using this method, chain rule is employed to turn fractional nonlinear partial differential equation into the nonlinear or-dinary differential equation in integer order. Owing to the chain rule, there is no further requirement for any normalization or discretization. Beta derivative which involves fractional term is used in considered mathematical models. Obtaining the exact solutions of these equations is very important for knowing the wave behavior in ocean engineering models.(c) 2021 Shanghai Jiaotong University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

Açıklama

Anahtar Kelimeler

Symmetric regularized long wave equation, Beta derivative, Ostrovsky equation, Analytical solution, Soliton solutions, Periodic wave solution

Kaynak

Journal of Ocean Engineering and Science

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

7

Sayı

5

Künye