On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries
dc.contributor.author | Ipek, Ahmet | |
dc.date.accessioned | 2024-09-18T20:59:04Z | |
dc.date.available | 2024-09-18T20:59:04Z | |
dc.date.issued | 2011 | |
dc.department | Hatay Mustafa Kemal Üniversitesi | en_US |
dc.description.abstract | This paper is an improving of the work [S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comp. 160 (2005), 125-132], in which the lower and upper bounds for the spectral norms of the matrices A = [F-(mod(j-i,F-n))](i,j-1)(n) and B = [L-(mod(j-i,L-n))](i,j-1)(n) are established. In this new paper, we compute the spectral norms of these matrices. (C) 2010 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.amc.2010.12.094 | |
dc.identifier.endpage | 6012 | en_US |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-79551636722 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 6011 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2010.12.094 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12483/12339 | |
dc.identifier.volume | 217 | en_US |
dc.identifier.wos | WOS:000286969000091 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.relation.ispartof | Applied Mathematics and Computation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Spectral norm | en_US |
dc.subject | Circulant matrices | en_US |
dc.subject | Fibonacci numbers | en_US |
dc.subject | Lucas numbers | en_US |
dc.title | On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1