Decision tree analysis of construction fall accidents involving roofers

Yükleniyor...
Küçük Resim

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Data mining (DM) techniques have not been adopted on a wide scale for construction accident data analysis. The decision tree (DT) technique is a supervised data mining method that shows good promise for this purpose. The C5.0 and CHAID algorithms were employed in this study to construct decision trees and to extract rules that show the associations between the input and output variables (attributes) for roofer fall accidents. Data obtained from the US Occupational Safety and Health Administration (OSHA) was incorporated in this research. Degree of injury (fatality vs. nonfatal injury) was selected as the output attribute, and a multitude of input attributes were included in the study. Two models based on the algorithms were developed and validated. The results showed that decision trees provided specific and detailed depictions of the associations between the attributes. It was found that fatality chances increased with increasing fall distance and decreased when safety training was provided. The most important input attributes in the models were identified as the fall distance, fatality/injury cause, safety training, and construction operation prompting fall, meaning that these factors had the best predictive power related to whether a roofer fall accident would result in a fatality or nonfatal injury. (C) 2014 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Fall accidents, Data mining, Degree of injury, Decision tree, Predictive power

Kaynak

Expert Systems With Applications

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

42

Sayı

4

Künye