Optimization of electrochemical step deposition for bioceramic hydroxyapatite coatings on CoCrMo implants
Yükleniyor...
Dosyalar
Tarih
2016
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Sa
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
CoCrMo metallic implants were coated with a bioceramic hydroxyapatite layer using a modified step electro-deposition at room temperature. Response Surface Methodology (RSM) and Central Composite Design (CCD) were used to model and optimize the step deposition parameters, such as initial potential, scan rate and peak potential. Interactions between step deposition parameters and in vitro corrosion performance of the coatings were modeled by response surface plots. Predicted and experimental values were fitted with high accuracy. The effects of the step deposition parameters were evaluated within the limits of lowest applied potential (-0.03 to -1.17 V), scan rate (3.43-116.57 mV/s) and highest applied deposition potential (-1.08 to -1.92 V). A 5-level-3-factor experiment plan was used to optimize step deposition parameters. Optimum conditions for the modified step deposition parameters were determined as initial potential of -0.76 V, peak potential of -1.67 V and scan rate of 59.33 mV/s. (C) 2015 Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
CoCrMo, Hydroxyapatite, Bioceramic, Central Composite Design, Response Surface Methodology, Electrodeposition
Kaynak
Surface & Coatings Technology
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
301