Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients

Yükleniyor...
Küçük Resim

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ireland Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k-NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Wavelet packet decomposition, Higher order statistics, Classification, Arrhythmia, ECG beat, Heartbeat, k-nearest neighbors

Kaynak

Computer Methods and Programs in Biomedicine

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

105

Sayı

3

Künye