Simulation of perforation and penetration in metal matrix composite materials using coupled viscoplastic damage model

Loading...
Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Access Rights

info:eu-repo/semantics/closedAccess

Abstract

In the first part of the two companion papers, theoretical formulation of the multiscale micromechanical constitutive model that couples the anisotropic damage mechanism with the viscoplastic deformation is presented. In the second part of these companion papers the numerical simulation of the computational aspects of the theory are elaborated. The perforation and penetration problem of metal matrix composites (MMCs) due to high impact loading is simulated. in this sense, the computational aspects of the developed theory are elaborated here. First. the verification of the developed model is performed through its numerical implementation in order to test the model predictions of the material characteristic tests. This encompasses uniaxial monotonic loading and unloading under different strain rates, uniaxial cyclic loading, and uniaxial loading and relaxation. The verified material routine of the developed model is then implemented in the explicit finite element code ABAQUS via the user defined subroutine VUMAT at each integration point in order to analyze the projectile impact and penetration into laminated composite plates. (C) 2009 Elsevier Ltd. All rights reserved.

Description

Keywords

Metal-matrix composites (MMCs), Impact behaviour, Damage mechanics, Finite element analysis (FEA), Perforation and Penetration

Journal or Series

Composites Part B-Engineering

WoS Q Value

Q1

Scopus Q Value

Q1

Volume

40

Issue

6

Citation