Yazar "Oflazoglu, Caglar" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Binary Classification Performances of Emotion Classes for Turkish Emotional Speech(Ieee, 2015) Oflazoglu, Caglar; Yildirim, SerdarEmotion recognition from speech plays important role for natural human-computer interaction. This study investigates binary classification performances of 4 fundamental emotion classes in Turkish Emotional Speech (TurES) Database using acoustic features for various classifiers. Results shows that Angry emotion class has higher classification rate (70%-80%) than others; lowest classification rate is obtained as 64% for Happy-Neutral emotion pair. Best classification results are obtained with J48 (C4.5) classifier for all emotion pairs.Öğe Recognizing emotion from Turkish speech using acoustic features(Springer, 2013) Oflazoglu, Caglar; Yildirim, SerdarAffective computing, especially from speech, is one of the key steps toward building more natural and effective human-machine interaction. In recent years, several emotional speech corpora in different languages have been collected; however, Turkish is not among the languages that have been investigated in the context of emotion recognition. For this purpose, a new Turkish emotional speech database, which includes 5,100 utterances extracted from 55 Turkish movies, was constructed. Each utterance in the database is labeled with emotion categories (happy, surprised, sad, angry, fearful, neutral, and others) and three-dimensional emotional space (valence, activation, and dominance). We performed classification of four basic emotion classes (neutral, sad, happy, and angry) and estimation of emotion primitives using acoustic features. The importance of acoustic features in estimating the emotion primitive values and in classifying emotions into categories was also investigated. An unweighted average recall of 45.5% was obtained for the classification. For emotion dimension estimation, we obtained promising results for activation and dominance dimensions. For valence, however, the correlation between the averaged ratings of the evaluators and the estimates was low. The cross-corpus training and testing also showed good results for activation and dominance dimensions.