Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Oflazoglu, Caglar" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ N/A ]
    Öğe
    Binary Classification Performances of Emotion Classes for Turkish Emotional Speech
    (Ieee, 2015) Oflazoglu, Caglar; Yildirim, Serdar
    Emotion recognition from speech plays important role for natural human-computer interaction. This study investigates binary classification performances of 4 fundamental emotion classes in Turkish Emotional Speech (TurES) Database using acoustic features for various classifiers. Results shows that Angry emotion class has higher classification rate (70%-80%) than others; lowest classification rate is obtained as 64% for Happy-Neutral emotion pair. Best classification results are obtained with J48 (C4.5) classifier for all emotion pairs.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Recognizing emotion from Turkish speech using acoustic features
    (Springer, 2013) Oflazoglu, Caglar; Yildirim, Serdar
    Affective computing, especially from speech, is one of the key steps toward building more natural and effective human-machine interaction. In recent years, several emotional speech corpora in different languages have been collected; however, Turkish is not among the languages that have been investigated in the context of emotion recognition. For this purpose, a new Turkish emotional speech database, which includes 5,100 utterances extracted from 55 Turkish movies, was constructed. Each utterance in the database is labeled with emotion categories (happy, surprised, sad, angry, fearful, neutral, and others) and three-dimensional emotional space (valence, activation, and dominance). We performed classification of four basic emotion classes (neutral, sad, happy, and angry) and estimation of emotion primitives using acoustic features. The importance of acoustic features in estimating the emotion primitive values and in classifying emotions into categories was also investigated. An unweighted average recall of 45.5% was obtained for the classification. For emotion dimension estimation, we obtained promising results for activation and dominance dimensions. For valence, however, the correlation between the averaged ratings of the evaluators and the estimates was low. The cross-corpus training and testing also showed good results for activation and dominance dimensions.

| Hatay Mustafa Kemal Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Hatay Mustafa Kemal Üniversitesi, Hatay, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim