Detection of fraudulent transactions using artificial neural networks and decision tree methods
Yükleniyor...
Dosyalar
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The accounting systems generate a large amount of data due to financial transactions. Intentionally fraudulent transactions can occur in high-dimensional and large numbers of emerging data. While many methods can be used for the estimation and detection of fraudulent transactions in accounting, which differ in the audit process, scope and application method, data mining methods can also be used today due to a large number of data and the desire not to narrow the scope of the audit. This study tested the accuracy of detecting fraudulent transactions using artificial neural networks and decision tree methods. According to the results of the analysis test data set for detecting fraud or error risk, 99.7981% accuracy was obtained in the artificial neural networks method and 99.9899% in the decision tree method.
Açıklama
Anahtar Kelimeler
Kaynak
Business and Management Studies: An International Journal
WoS Q Değeri
Scopus Q Değeri
Cilt
11
Sayı
2