Classification of Emotion Primitives from EEG Signals Using Visual and Audio Stimuli
Yükleniyor...
Dosyalar
Tarih
2015
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Emotion recognition from EEG signals has an important role in designing Brain-Computer Interface. This paper compares effects of audio and visual stimuli, used for collecting emotional EEG signals, on emotion classification performance. For this purpose EEG data from 25 subjects are collected and binary classification (low/high) for valence and activation emotion dimensions are performed. Wavelet transform is used for feature extraction and 3 classifiers are used for classification. True positive rates of 71.7% and 78.5% are obtained using audio and video stimuli for valence dimension 71% and 82% are obtained using audio and video stimuli for arousal dimension, respectively.
Açıklama
23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY
Anahtar Kelimeler
EEG, Arousal, Valence, Emotion Primitive Classification
Kaynak
2015 23rd Signal Processing and Communications Applications Conference (Siu)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A