Process optimization of deposition conditions of PbS thin films grown by a successive ionic layer adsorption and reaction (SILAR) method using response surface methodology
Yükleniyor...
Dosyalar
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, lead sulfide (PbS) thin films were synthesized by a successive ionic layer adsorption and reaction (SILAR) method with different pH, dipping time and dipping cycles. Response surface methodology (RSM) and central composite design (CCD) were successfully used to optimize the PbS films deposition parameters and understand the significance and interaction of the factors affecting the film quality. 5-level-3-factor central composite design was employed to evaluate the effects of the deposition parameters (pH, dipping time and dipping cycles) on the response (the optical band gap of the films). Data obtained from RSM were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation. The optimal conditions for the PbS films deposition have been found to be pH of 9.1, dipping time of 10 s and dipping cycles of 10 cycles. The predicted band gap of PbS film was 2.13 eV under the optimal conditions. Verification experiment (2.24 eV) confirmed the validity of the predicted model. The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV-visible spectrophotometer. (C) 2015 Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
Computer simulation, Growth from solutions, Sulfides, Semiconducting lead compounds
Kaynak
Journal of Crystal Growth
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
422