Carrying system formula for eugenol encapsulation: glycodendritic polyamine dextran-G2.5, synthesis and in vitro antibacterial activity

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A novel 2.5th-generation glycodendritic polyamine dextran with 96 arms (DPADx) was synthesized by the divergent method. 2.5th-generation dendrimer was obtained from the successive triplicate Michael addition with two amidation reactions using 0.5th-generation tris(2-aminoethyl)amine (TAEA-G0.5) as the initiator core. 2.5th-generation polyamine hydrazide (PAH) was obtained from hydrazine monohydrate. Finally, dextran was conjugated with PAH and so DPADx was obtained. FTIR, H-1- and C-13-NMR, elemental analysis, GPC, XRD, SEM, TGA, DSC and dynamic viscosity were used for structural analysis of products. Loading efficiency, capacity and yield (%) of eugenol-encapsulated glycodendrimer were calculated as 70%, 84% and 35%, respectively; by using UV-Vis analysis results, antimicrobial activity against Gram-positive (Staphylococcus aureus, Listeria monocytogenes and Enterococcus cesseliflour) and Gram-negative (Escherichia coli and Salmonella Typhimurium) bacteria was proven. The current study demonstrated the usability of the novel dendritic glycopolymer as an innovative and environmentally friendly way to encapsulate and shuttle of EOs without altering sensory characteristics and the functionality of these molecules. Therefore, its commercial application is possible in a variety of fields, such as pharmaceutic and cosmetic industries.

Açıklama

Anahtar Kelimeler

Dendrimer, Polyamine dextran, Essential oil, Eugenol, Antimicrobial activity

Kaynak

Polymer Bulletin

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

78

Sayı

2

Künye