CBCT ve üç boyutlu laboratuvar tarayıcısından yararlanılarak CAD
Yükleniyor...
Dosyalar
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Hatay Mustafa Kemal Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Giriş ve Amaç: Bu çalışmada; 3 boyutlu (3B) laboratuvar tarayıcısı ve konik ışınlı bilgisayarlı tomografi (CBCT – Cone Beam Computerized Tomography) verileri kullanılarak bilgisayar destekli tasarım / bilgisayar destekli üretim (CAD/CAM – computer-aided design / computer-aided manufacturing) ile üretilen posterior monolitik zirkonyum kuronların dikey marjinal açıklıklarının (DMA) üretim yöntemi bakımından karşılaştırılarak değerlendirilmesi amaçlanmıştır. Gereç ve Yöntem: Çekilmiş sol üst birinci molar diş, kuron ve kole bölgesi dışarıda kalacak şekilde akrilik küp taban içerisine gömüldü ve kuron preparasyon esaslarına göre "shoulder" basamaklı preparasonu tamamlandı (okluzal yüzeyden 1,5-2 mm, diğer yüzeylerden yaklaşık 1 mm diş sert dokusu kaldırıldı). Elde edilen çalışma model, 3B laboratuvar tarayıcısıyla taranarak sanal ortamda dijital modele dönüştürüldü (Kontrol Grubu - K Grubu). Çalışma modeli, CBCT ile taranarak bir dijital model daha oluşturuldu (1. Deney Grubu - D1 Grubu). CBCT ile oluşturulan dijital modelden polimetilmetakrilat (PMMA) kullanılarak gerçek boyutta CAD/CAM ile model üretildi ve üretilen bu model 3B laboratuvar tarayıcısı ile taranarak ayrı bir dijital modele daha dönüştürüldü (2. Deney Grubu - D2 Grubu). Elde edilen 3 ayrı gruba ait her bir nihai dijital modelin üzerinde, aynı parametrelere sahip (marjinal kenar sınırında 40 µm, marjinal kenar sınırından 1 mm yukarıdaki yüzeylerde 70 µm siman aralığı ayarlandı), monolitik zirkonyum kuronlar tasarlandı. Her grupta 16 örnek olacak şekilde (güç analızi sonucu >%80), 5 eksenli CAM cihazı ile kuronlar üretildi. Çalışma modelinde, diş etrafında belirlenen 8 sabit noktadan, restorasyonların DMA değerlerini ölçmek için ×100 büyütmeyle mikroskop altında ölçümler yapıldı. Her örneğin ortalaması hesaplandı ve gruplar bazında ortalamalar elde edildi. Toplanan veriler ile grupların dikey marjinal uyumlarını ikili olarak karşılaştırıldı. Gruplar arasında istatistiksel fark, Kruskal-Wallis testiyle araştırıldı (α=0,05). Grupların ikili karşılaştırılmasında Mann-Whitney U testi kullanıldı. İstatiksel farkı ortaya çıkarmak için %95 güven aralığında Bonferroni düzeltmesi kullanıldı (α=0,017). Bulgular: Her grupta 16 örnek ve her örnekte 8 ölçüm noktası olmak üzere, 3 grupta toplam 384 noktadan ölçüm yapıldı. K Grubu için DMA ortalama değeri 40,98 µm, D1 Grubu için 43,60 µm ve D2 Grubu için 59,97 µm olarak hesaplandı. K Grubu ile D1 Grubu arasında anlamlı derecede fark bulunmazken (p=0,274), K Grubu ile D2 grubu arasında ve D1 Grubu ile D2 Grubu arasında anlamlı derecede fark bulundu (p<0,001). Sonuçlar: Bu in-vitro çalışmanın sınırlı koşulları içerisinde; 3B laboratuvar tarayıcısı verileri ve CAD/CAM ile üretimin DMA açısında 120 µm'nin altında klinik olarak kabul edilebilir ve en iyi sonuçları verdiği bir kez daha kanıtlamıştır. CBCT verileri kullanılarak modifiye üretim teknikleri ile yapılan monolitik zirkonyum kuron üretiminin ise klinik olarak kabul edilebilir (<120 µm) ve umut vaat edici sonuçlar verdiği görülmüştür.
Background and Aim: In this study; it was aimed to evaluate the vertical marginal discrepancy (VMD) of posterior monolithic zirconium crowns fabricated with computer-aided design / computer-aided manufacturing (CAD /CAM) using 3-dimensional (3D) laboratory scanning and CBCT data by comparing them in terms of production method. Materials and Methods: An extracted upper left first molar tooth was embedded in an acrylic cube-base so that its crown and collum would remain out and preparation with shoulder margins was completed according to crown preparation principles (dental hard tissue reduction of 1,5-2 mm on occlusal and approximately 1 mm on other aspects). The obtained master model was digitized with 3D laboratory scanner (Control Group - Group K). The master model was scanned using cone beam computerized tomography (CBCT) to create another virtual 3D model (1. Experimental Group - Group D1). A real model of polymethylmethacrylate (PMMA) was reproduced from the obtained CBCT data and was further scanned with 3D laboratory scanner to create another virtual 3D model more (2. Experimental Group - Group D2). Monolithic zirconium crowns with identical parameters (cement space was set at 40 μm around the margin, and at 70 μm 1 mm above) were designed on the digital models of 3 groups and 16 samples (with >80% power) in each group were fabricated in a 5-axis CAM device. VMD measurements were made at 8 fixed locations around the tooth on the master model using ×100 magnification microscopy. The measurements in each sample were averaged and the means were calculated for each group. VMD mean values were compared between group pairs. Kruskal-Walli test was used to investigate any statistical significance (α=0,05). The Mann-Whitney U test and Bonferroni adjustment with 95% confidence limits were further used to compare group pairs (α=0,017). Results: Measurements were made for 384 points in 3 groups of 16 samples with 8 measurement locations per sample. VMD mean value for Group K was calculated as 40,98 μm, for Group D1 was 43,60 μm, and for Group D2 was 59,97 μm. No significant difference was found between Groups K and D1 (p=0,274), whereas between Groups K and D2, and Group D1 and Group D2 there was a significant difference (p<0,001). Conclusion: Within the limitations of this in-vitro study; it was again affirmed that CAD/CAM production based on 3D laboratory scanning provides the best fit within the clinically acceptable limit of 120 µm in terms of VMD. Modified production based on CBCT data provided monolithic zirconia crown fabrication with clinically acceptable (<120 µm) and promising results for VMD.
Background and Aim: In this study; it was aimed to evaluate the vertical marginal discrepancy (VMD) of posterior monolithic zirconium crowns fabricated with computer-aided design / computer-aided manufacturing (CAD /CAM) using 3-dimensional (3D) laboratory scanning and CBCT data by comparing them in terms of production method. Materials and Methods: An extracted upper left first molar tooth was embedded in an acrylic cube-base so that its crown and collum would remain out and preparation with shoulder margins was completed according to crown preparation principles (dental hard tissue reduction of 1,5-2 mm on occlusal and approximately 1 mm on other aspects). The obtained master model was digitized with 3D laboratory scanner (Control Group - Group K). The master model was scanned using cone beam computerized tomography (CBCT) to create another virtual 3D model (1. Experimental Group - Group D1). A real model of polymethylmethacrylate (PMMA) was reproduced from the obtained CBCT data and was further scanned with 3D laboratory scanner to create another virtual 3D model more (2. Experimental Group - Group D2). Monolithic zirconium crowns with identical parameters (cement space was set at 40 μm around the margin, and at 70 μm 1 mm above) were designed on the digital models of 3 groups and 16 samples (with >80% power) in each group were fabricated in a 5-axis CAM device. VMD measurements were made at 8 fixed locations around the tooth on the master model using ×100 magnification microscopy. The measurements in each sample were averaged and the means were calculated for each group. VMD mean values were compared between group pairs. Kruskal-Walli test was used to investigate any statistical significance (α=0,05). The Mann-Whitney U test and Bonferroni adjustment with 95% confidence limits were further used to compare group pairs (α=0,017). Results: Measurements were made for 384 points in 3 groups of 16 samples with 8 measurement locations per sample. VMD mean value for Group K was calculated as 40,98 μm, for Group D1 was 43,60 μm, and for Group D2 was 59,97 μm. No significant difference was found between Groups K and D1 (p=0,274), whereas between Groups K and D2, and Group D1 and Group D2 there was a significant difference (p<0,001). Conclusion: Within the limitations of this in-vitro study; it was again affirmed that CAD/CAM production based on 3D laboratory scanning provides the best fit within the clinically acceptable limit of 120 µm in terms of VMD. Modified production based on CBCT data provided monolithic zirconia crown fabrication with clinically acceptable (<120 µm) and promising results for VMD.
Açıklama
Anahtar Kelimeler
Diş Hekimliği, Dentistry, Monolitik zirkonyum kuron, dikey marjinal aralık, CAD/CAM, CBCT, Monolithic zirconia crown, vertical marginal discrepancy, CAD/CAM, CBCT